NEUROCOMPUTATIONAL MODELLING OF DISTRIBUTED LEARNING FROM VISUAL STIMULI

Neurocomputational modeling of visual stimuli can lead not only to identify the neural substrates of attention but also to test cognitive theories ofattention with applications on several visual media, robotics, etc. However, there are many research works done in cognitive model for linguistics,but...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Asian journal of pharmaceutical and clinical research Ročník 10; číslo 13; s. 225
Hlavní autoři: Rai, Ankush, R, Jagadeesh Kannan
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.04.2017
ISSN:0974-2441, 0974-2441
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Neurocomputational modeling of visual stimuli can lead not only to identify the neural substrates of attention but also to test cognitive theories ofattention with applications on several visual media, robotics, etc. However, there are many research works done in cognitive model for linguistics,but the studies regarding cognitive modeling of learning mechanisms for visual stimuli are falling back. Based on principles of operation cognitivefunctionalities in human vision processing, the study presents the development of a computational neurocomputational cognitive model for visualperception with detailed algorithmic descriptions. Here, four essential questions of cognition and visual attention is considered for logicallycompressing into one unified neurocomputational model: (i) Segregation of special classes of stimuli and attention modulation, (ii) relation betweengaze movements and visual perception, (iii) mechanism of selective stimulus processing and its encoding in neuronal cells, and (iv) mechanism ofvisual perception through autonomous relation proofing.
ISSN:0974-2441
0974-2441
DOI:10.22159/ajpcr.2017.v10s1.19645