Submodular + Supermodular function maximization with knapsack constraint

We investigate a class of non-submodular function optimization problems, specifically maximizing the sum of a normalized monotone submodular function f and a normalized monotone supermodular function g under a knapsack constraint. By utilizing the total curvature κf of f and the supermodular curvatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics Jg. 377; S. 113 - 133
Hauptverfasser: Shi, Majun, Yang, Zishen, Wang, Wei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 31.12.2025
Schlagworte:
ISSN:0166-218X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We investigate a class of non-submodular function optimization problems, specifically maximizing the sum of a normalized monotone submodular function f and a normalized monotone supermodular function g under a knapsack constraint. By utilizing the total curvature κf of f and the supermodular curvature κg of g, we demonstrate that this problem can achieve a near-optimal solution through three approaches: a greedy algorithm, an iterated submodular+modular procedure and a sandwich method. In particular, we prove that both the greedy algorithm and the iterated submodular+modular procedure provide an approximation guarantee of 1κf(1−e−(1−κg)κf), while the sandwich method achieves a (1−κg)(1−κfe)-approximation ratio. All proposed algorithms run in polynomial time, and parameters such as κf and κg can be computed efficiently in linear time. Additionally, all three algorithms yield a (1−κg)-approximation performance for knapsack-constrained monotone supermodular function maximization. Finally, we empirically test our first two algorithms on a constructed application. Although both algorithms have the same theoretical guarantee, their practical behavior differs significantly, leading to distinct solutions.
AbstractList We investigate a class of non-submodular function optimization problems, specifically maximizing the sum of a normalized monotone submodular function f and a normalized monotone supermodular function g under a knapsack constraint. By utilizing the total curvature κf of f and the supermodular curvature κg of g, we demonstrate that this problem can achieve a near-optimal solution through three approaches: a greedy algorithm, an iterated submodular+modular procedure and a sandwich method. In particular, we prove that both the greedy algorithm and the iterated submodular+modular procedure provide an approximation guarantee of 1κf(1−e−(1−κg)κf), while the sandwich method achieves a (1−κg)(1−κfe)-approximation ratio. All proposed algorithms run in polynomial time, and parameters such as κf and κg can be computed efficiently in linear time. Additionally, all three algorithms yield a (1−κg)-approximation performance for knapsack-constrained monotone supermodular function maximization. Finally, we empirically test our first two algorithms on a constructed application. Although both algorithms have the same theoretical guarantee, their practical behavior differs significantly, leading to distinct solutions.
Author Wang, Wei
Yang, Zishen
Shi, Majun
Author_xml – sequence: 1
  givenname: Majun
  orcidid: 0000-0002-7990-9959
  surname: Shi
  fullname: Shi, Majun
  organization: School of Mathematics, Xi’an University of Finance and Economics, Xi’an, 710100, China
– sequence: 2
  givenname: Zishen
  surname: Yang
  fullname: Yang, Zishen
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China
– sequence: 3
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: wang_weiw@163.com
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China
BookMark eNp9j09LAzEQxXOoYFv9AN72LrtO0nZ3gycpaoWChyp4C9NJgmm72ZLs-u_Tm1q9Cg-G9-AN7zdiA996w9gFh4IDL682hcamECBmBZRJYsCGKS9zweuXUzaKcQMAPLkhW6z6ddPqfochu8xW_d6EP2t7T51rfdbgh2vcF_6Yd9e9ZluP-4i0zaj1sQvofHfGTizuojn_vWP2fHf7NF_ky8f7h_nNMqe0oMsNTGaCpABLUElEU2JtpEY-parUhIZL4LqyUysIrFzXEiqYgBC6trLCejJm_PiXQhtjMFbtg2swfCoO6oCvNirhqwO-gjJJpM71sWPSsDdngorkjCejXTDUKd26f9rfqwhoNg
Cites_doi 10.1016/S0020-0190(99)00031-9
10.1007/BF01588971
10.1016/j.disc.2024.114287
10.1007/978-3-030-27195-4_12
10.1016/0166-218X(84)90003-9
10.1007/978-3-540-72792-7_15
10.1016/j.dam.2015.01.026
10.1007/BFb0121195
10.1007/s10898-021-01063-6
10.1016/j.tcs.2020.05.018
10.1007/s10957-022-02145-5
10.1137/130920277
10.1137/16M1107644
10.1016/S0167-6377(03)00062-2
10.1145/1374376.1374389
10.1007/978-3-030-26176-4_54
10.1007/s40305-018-0233-3
10.1137/080733991
10.1137/1.9781611973730.76
10.1007/s10898-021-01123-x
10.1007/s40305-022-00444-2
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.dam.2025.06.062
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 133
ExternalDocumentID 10_1016_j_dam_2025_06_062
S0166218X25003786
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11971376
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Young Talent Fund of Association for Science and Technology in Shaanxi
  grantid: 20230506
– fundername: Scientific Research Program Funded by Education Department of Shaanxi Provincial Government
  grantid: 23JK0449
– fundername: Natural Science Basic Research Program of Shaanxi
  grantid: 2023-JC-QN-0086
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
ID FETCH-LOGICAL-c166t-e0352c920fc079aae6a8e9da14c76dcae1901d7f4f2c0f9b890703022d8f97a83
ISSN 0166-218X
IngestDate Wed Nov 05 20:55:42 EST 2025
Sat Oct 11 16:52:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Greedy algorithm
Submodular function
Iterated submodular+modular procedure
Supermodular function
Sandwich method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c166t-e0352c920fc079aae6a8e9da14c76dcae1901d7f4f2c0f9b890703022d8f97a83
ORCID 0000-0002-7990-9959
PageCount 21
ParticipantIDs crossref_primary_10_1016_j_dam_2025_06_062
elsevier_sciencedirect_doi_10_1016_j_dam_2025_06_062
PublicationCentury 2000
PublicationDate 2025-12-31
PublicationDateYYYYMMDD 2025-12-31
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Discrete Applied Mathematics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Filmus, Ward (b9) 2013; 43
Nemhauser, Wolsey, Fisher (b17) 1978; 14
Liu, Guo, Du, Xu, Zhang (b14) 2022; 82
Z.N. Zhang, B. Liu, Y.S. Wang, D.C. Xu, D.M. Zhang, A greedy algorithm for maximization of non-submodular functions subject to a knapsack constraint, in: Proceedings of the 26th International Computing and Combinatorics Conference, 2019, pp. 651–662.
Lu, Yang, Yang, Gao (b15) 2022; 83
M. Narasimhan, J. Bilmes, A submodular-supermodular procedure with applications to discriminative structure learning, in: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, 2005, pp. 404–412.
Khuller, Moss, Naor (b13) 1999; 70
M. Sviridenko, J. Vondrák, J. Ward, Optimal approximation for submodular and supermodular optimization with bounded curvature, in: Proceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms, 2015, pp. 1134–1148.
Fisher, Nemhauser, Wolsey (b10) 1978; 8
Sviridenko (b22) 2004; 32
Shi, Yang, Wang (b20) 2023; 196
R. Iyer, J. Bilmes, Algorithms for approximate minimization of the difference between submodular functions, with applications, in: Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, 2012, pp. 407–417.
C.G. Gao, S.Y. Gu, R.Q. Yang, J.G. Yu, W.L. Wu, D.C. Xu, Interaction-aware influence maximization and iterated sandwich method, in: Proceedings of the 13th International Conference on Algorithmic Aspects in Information and Management, 2019, pp. 129–141.
Nong, Sun, Gong, Fang, Du, Shao (b18) 2021; 853
A.A. Bian, J.M. Buhmann, A. Krause, S. Tschiatschek, Guarantees for greedy maximization of non-submodular functions with applications, in: Proceedings of the 34th International Conference on Machine Learning, 2017, pp. 498–507.
Byrnes (b3) 2015; 186
Conforti, Cornuéjols (b7) 1984; 7
Vondrák (b25) 2009; B23
G. Calinescu, C. Chekuri, M. Pál, J. Vondrák, Maximizing a submodular set function subject to a matroid constraint (extended abstract), in: Proceedings of the 12th Conference on Integer Programming and Combinatorial Optimization, vol. 4513, 2007, pp. 182–196.
Calinescu, Chekuri, Pál, Vondrák (b5) 2011; 40
Yoshida (b27) 2019; 33
W. Bai, J.A. Bilmes, Greed is still good: maximizing monotone submodular+supermodular functions, in: Proceedings of the 35th International Conference on Machine Learning, 2018, pp. 304–313.
L. Chen, M. Feldman, A. Karbasi, Weakly submodular maximization beyond cardinality constraints: does randomization help greedy?, in: Proceedings of the 35th International Conference on Machine Learning, 2018, pp. 804–813.
J. Vondrák, Optimal approximation for the submodular welfare problem in the value oracle model, in: Proceedings of the 40th ACM Symposium on Theory of Computing, 2008, pp. 67–74.
Shi, Zhu, Liu, Li (b21) 2025; 348
Shi, Wang (b19) 2024; 12
A. Das, D. Kempe, Submodular meets spectral: greedy algorithms for subset selection, sparse approximation, and dictionary selection, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 1057–1064.
Wu, Zhang, Du (b26) 2019; 7
Fisher (10.1016/j.dam.2025.06.062_b10) 1978; 8
10.1016/j.dam.2025.06.062_b16
Filmus (10.1016/j.dam.2025.06.062_b9) 2013; 43
10.1016/j.dam.2025.06.062_b11
Vondrák (10.1016/j.dam.2025.06.062_b25) 2009; B23
10.1016/j.dam.2025.06.062_b12
Shi (10.1016/j.dam.2025.06.062_b21) 2025; 348
Sviridenko (10.1016/j.dam.2025.06.062_b22) 2004; 32
Lu (10.1016/j.dam.2025.06.062_b15) 2022; 83
Shi (10.1016/j.dam.2025.06.062_b20) 2023; 196
Nemhauser (10.1016/j.dam.2025.06.062_b17) 1978; 14
10.1016/j.dam.2025.06.062_b2
Nong (10.1016/j.dam.2025.06.062_b18) 2021; 853
10.1016/j.dam.2025.06.062_b4
Khuller (10.1016/j.dam.2025.06.062_b13) 1999; 70
Conforti (10.1016/j.dam.2025.06.062_b7) 1984; 7
10.1016/j.dam.2025.06.062_b1
10.1016/j.dam.2025.06.062_b28
Calinescu (10.1016/j.dam.2025.06.062_b5) 2011; 40
10.1016/j.dam.2025.06.062_b6
10.1016/j.dam.2025.06.062_b24
10.1016/j.dam.2025.06.062_b8
Byrnes (10.1016/j.dam.2025.06.062_b3) 2015; 186
Yoshida (10.1016/j.dam.2025.06.062_b27) 2019; 33
10.1016/j.dam.2025.06.062_b23
Liu (10.1016/j.dam.2025.06.062_b14) 2022; 82
Wu (10.1016/j.dam.2025.06.062_b26) 2019; 7
Shi (10.1016/j.dam.2025.06.062_b19) 2024; 12
References_xml – reference: W. Bai, J.A. Bilmes, Greed is still good: maximizing monotone submodular+supermodular functions, in: Proceedings of the 35th International Conference on Machine Learning, 2018, pp. 304–313.
– reference: M. Sviridenko, J. Vondrák, J. Ward, Optimal approximation for submodular and supermodular optimization with bounded curvature, in: Proceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms, 2015, pp. 1134–1148.
– reference: J. Vondrák, Optimal approximation for the submodular welfare problem in the value oracle model, in: Proceedings of the 40th ACM Symposium on Theory of Computing, 2008, pp. 67–74.
– volume: 853
  start-page: 16
  year: 2021
  end-page: 24
  ident: b18
  article-title: Maximize a monotone function with a generic submodularity ratio
  publication-title: Theory Comput. Sci.
– volume: B23
  start-page: 253
  year: 2009
  end-page: 266
  ident: b25
  article-title: Submodularity and curvature: the optimal algorithm
  publication-title: RIMS Kokyuroku Bessatsu
– volume: 196
  start-page: 516
  year: 2023
  end-page: 543
  ident: b20
  article-title: Greedy guarantees for non-submodular function maximization under independent system constraint with applications
  publication-title: J. Optim. Theory Appl.
– volume: 40
  start-page: 1740
  year: 2011
  end-page: 1766
  ident: b5
  article-title: Maximizing a monotone submodular function subject to a matroid constraint
  publication-title: SIAM J. Comput.
– volume: 70
  start-page: 39
  year: 1999
  end-page: 45
  ident: b13
  article-title: The budgeted maximum coverage problem
  publication-title: Inform. Process. Lett.
– volume: 7
  start-page: 183
  year: 2019
  end-page: 193
  ident: b26
  article-title: Set function optimization
  publication-title: J. Oper. Res. Soc. China
– reference: G. Calinescu, C. Chekuri, M. Pál, J. Vondrák, Maximizing a submodular set function subject to a matroid constraint (extended abstract), in: Proceedings of the 12th Conference on Integer Programming and Combinatorial Optimization, vol. 4513, 2007, pp. 182–196.
– reference: A.A. Bian, J.M. Buhmann, A. Krause, S. Tschiatschek, Guarantees for greedy maximization of non-submodular functions with applications, in: Proceedings of the 34th International Conference on Machine Learning, 2017, pp. 498–507.
– volume: 186
  start-page: 275
  year: 2015
  end-page: 282
  ident: b3
  article-title: A tight analysis of the submodular-supermodular procedure
  publication-title: Discrete Appl. Math.
– volume: 12
  start-page: 627
  year: 2024
  end-page: 648
  ident: b19
  article-title: Greedy is good: constrained non-submodular function maximization via weak submodularity
  publication-title: J. Oper. Res. Soc. China
– volume: 32
  start-page: 41
  year: 2004
  end-page: 43
  ident: b22
  article-title: A note on maximizing a submodular set function subject to a knapsack constraint
  publication-title: Oper. Res. Lett.
– reference: L. Chen, M. Feldman, A. Karbasi, Weakly submodular maximization beyond cardinality constraints: does randomization help greedy?, in: Proceedings of the 35th International Conference on Machine Learning, 2018, pp. 804–813.
– volume: 14
  start-page: 265
  year: 1978
  end-page: 294
  ident: b17
  article-title: An analysis of approximations for maximizing submodular set functions-I
  publication-title: Math. Program.
– reference: A. Das, D. Kempe, Submodular meets spectral: greedy algorithms for subset selection, sparse approximation, and dictionary selection, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 1057–1064.
– reference: C.G. Gao, S.Y. Gu, R.Q. Yang, J.G. Yu, W.L. Wu, D.C. Xu, Interaction-aware influence maximization and iterated sandwich method, in: Proceedings of the 13th International Conference on Algorithmic Aspects in Information and Management, 2019, pp. 129–141.
– reference: M. Narasimhan, J. Bilmes, A submodular-supermodular procedure with applications to discriminative structure learning, in: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, 2005, pp. 404–412.
– volume: 7
  start-page: 251
  year: 1984
  end-page: 274
  ident: b7
  article-title: Submodular functions, matroids, and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem
  publication-title: Discrete Appl. Math.
– volume: 43
  start-page: 514
  year: 2013
  end-page: 542
  ident: b9
  article-title: Monotone submodular maximization over a matroid via non-oblivious local search
  publication-title: SIAM J. Comput.
– volume: 348
  year: 2025
  ident: b21
  article-title: Weak submodularity implies localizability: local search for constrained non-submodular function maximization
  publication-title: Discrete Math.
– volume: 83
  start-page: 727
  year: 2022
  end-page: 751
  ident: b15
  article-title: Maximizing a non-decreasing non-submodular function subject to various types of constraints
  publication-title: J. Global Optim.
– reference: Z.N. Zhang, B. Liu, Y.S. Wang, D.C. Xu, D.M. Zhang, A greedy algorithm for maximization of non-submodular functions subject to a knapsack constraint, in: Proceedings of the 26th International Computing and Combinatorics Conference, 2019, pp. 651–662.
– volume: 82
  start-page: 179
  year: 2022
  end-page: 194
  ident: b14
  article-title: Maximization problems of balancing submodular relevance and supermodular diversity
  publication-title: J. Global Optim.
– volume: 8
  start-page: 73
  year: 1978
  end-page: 87
  ident: b10
  article-title: An analysis of approximations for maximizing submodular set functions-II
  publication-title: Math. Prog. Study
– reference: R. Iyer, J. Bilmes, Algorithms for approximate minimization of the difference between submodular functions, with applications, in: Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, 2012, pp. 407–417.
– volume: 33
  start-page: 1452
  year: 2019
  end-page: 1471
  ident: b27
  article-title: Maximizing a monotone submodular function with a bounded curvature under a knapsack constraint
  publication-title: SIAM J. Discrete Math.
– volume: 70
  start-page: 39
  issue: 1
  year: 1999
  ident: 10.1016/j.dam.2025.06.062_b13
  article-title: The budgeted maximum coverage problem
  publication-title: Inform. Process. Lett.
  doi: 10.1016/S0020-0190(99)00031-9
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 10.1016/j.dam.2025.06.062_b17
  article-title: An analysis of approximations for maximizing submodular set functions-I
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
– volume: 348
  issue: 2
  year: 2025
  ident: 10.1016/j.dam.2025.06.062_b21
  article-title: Weak submodularity implies localizability: local search for constrained non-submodular function maximization
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2024.114287
– ident: 10.1016/j.dam.2025.06.062_b1
– ident: 10.1016/j.dam.2025.06.062_b11
  doi: 10.1007/978-3-030-27195-4_12
– volume: B23
  start-page: 253
  year: 2009
  ident: 10.1016/j.dam.2025.06.062_b25
  article-title: Submodularity and curvature: the optimal algorithm
  publication-title: RIMS Kokyuroku Bessatsu
– volume: 7
  start-page: 251
  issue: 3
  year: 1984
  ident: 10.1016/j.dam.2025.06.062_b7
  article-title: Submodular functions, matroids, and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(84)90003-9
– ident: 10.1016/j.dam.2025.06.062_b4
  doi: 10.1007/978-3-540-72792-7_15
– volume: 186
  start-page: 275
  year: 2015
  ident: 10.1016/j.dam.2025.06.062_b3
  article-title: A tight analysis of the submodular-supermodular procedure
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2015.01.026
– volume: 8
  start-page: 73
  year: 1978
  ident: 10.1016/j.dam.2025.06.062_b10
  article-title: An analysis of approximations for maximizing submodular set functions-II
  publication-title: Math. Prog. Study
  doi: 10.1007/BFb0121195
– ident: 10.1016/j.dam.2025.06.062_b16
– volume: 82
  start-page: 179
  year: 2022
  ident: 10.1016/j.dam.2025.06.062_b14
  article-title: Maximization problems of balancing submodular relevance and supermodular diversity
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-021-01063-6
– ident: 10.1016/j.dam.2025.06.062_b12
– volume: 853
  start-page: 16
  year: 2021
  ident: 10.1016/j.dam.2025.06.062_b18
  article-title: Maximize a monotone function with a generic submodularity ratio
  publication-title: Theory Comput. Sci.
  doi: 10.1016/j.tcs.2020.05.018
– volume: 196
  start-page: 516
  issue: 2
  year: 2023
  ident: 10.1016/j.dam.2025.06.062_b20
  article-title: Greedy guarantees for non-submodular function maximization under independent system constraint with applications
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-022-02145-5
– ident: 10.1016/j.dam.2025.06.062_b2
– ident: 10.1016/j.dam.2025.06.062_b6
– volume: 43
  start-page: 514
  issue: 2
  year: 2013
  ident: 10.1016/j.dam.2025.06.062_b9
  article-title: Monotone submodular maximization over a matroid via non-oblivious local search
  publication-title: SIAM J. Comput.
  doi: 10.1137/130920277
– volume: 33
  start-page: 1452
  year: 2019
  ident: 10.1016/j.dam.2025.06.062_b27
  article-title: Maximizing a monotone submodular function with a bounded curvature under a knapsack constraint
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/16M1107644
– ident: 10.1016/j.dam.2025.06.062_b8
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: 10.1016/j.dam.2025.06.062_b22
  article-title: A note on maximizing a submodular set function subject to a knapsack constraint
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(03)00062-2
– ident: 10.1016/j.dam.2025.06.062_b24
  doi: 10.1145/1374376.1374389
– ident: 10.1016/j.dam.2025.06.062_b28
  doi: 10.1007/978-3-030-26176-4_54
– volume: 7
  start-page: 183
  issue: 2
  year: 2019
  ident: 10.1016/j.dam.2025.06.062_b26
  article-title: Set function optimization
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-018-0233-3
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 10.1016/j.dam.2025.06.062_b5
  article-title: Maximizing a monotone submodular function subject to a matroid constraint
  publication-title: SIAM J. Comput.
  doi: 10.1137/080733991
– ident: 10.1016/j.dam.2025.06.062_b23
  doi: 10.1137/1.9781611973730.76
– volume: 83
  start-page: 727
  year: 2022
  ident: 10.1016/j.dam.2025.06.062_b15
  article-title: Maximizing a non-decreasing non-submodular function subject to various types of constraints
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-021-01123-x
– volume: 12
  start-page: 627
  issue: 3
  year: 2024
  ident: 10.1016/j.dam.2025.06.062_b19
  article-title: Greedy is good: constrained non-submodular function maximization via weak submodularity
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-022-00444-2
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.434592
Snippet We investigate a class of non-submodular function optimization problems, specifically maximizing the sum of a normalized monotone submodular function f and a...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113
SubjectTerms Greedy algorithm
Iterated submodular+modular procedure
Sandwich method
Submodular function
Supermodular function
Title Submodular + Supermodular function maximization with knapsack constraint
URI https://dx.doi.org/10.1016/j.dam.2025.06.062
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20211209
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001218
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20220331
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001218
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLa6skN3mAbbRDc2-bBdQJESN4ntY8c6AWJoEiAKl8h1bKktDRX9of75e47tNB0gsUm7RNWrEqd-X18-vzx_D6Ev8P8JTceBIGEyD-I00QEXHBYrilMN9CBVVjL_lJ6dsX6f_2o0TvxemOUtLQq2WvHpf3U12MDZZuvsX7i7uigY4DM4HY7gdjg-y_EQCiZ3eVld-pV8g8gwheDrDOYpVjp8IlbDiduCaXOx40JMZ0KOTR36rGwcsZG1_z6E-AIEu6KtPyu914qVn5cNguGb0aKC3LXLR9-Y2vvKeuWsV2pYTzuQxIsb-lzYg_0wNj2ZpgGQhn49vnZcnxYbISO79dQ9bCOrgvEgjtuUwgiGN2oBJCk1Vl3Y3pTHPjdjmiGBy4UdytIXaIvQhLMm2uoe9_onNTExo5TX8um39dsmYF2x04C3d-_ffpd1gH_cwuP8pcZJLt6g124xgbsWBNuooYod9KrmmbfoaA0HfIDrYMAeDLgOBmzAgD0Y8BoM79Dlj97F4VHgumcEEn7HPFBG6VZyEmoZUi6ESgVTPBdRLGmaS6EMFcypjjWRoeYDxsvoT0jONKeCdd6jZnFXqF2EozjSctCRsPiFBS4RPKGSUTLQsNZM4LpttO_nJJtakZTMVw-OMpjAzExgZiooU9JGsZ-1zLE8y94ycP7Tp334t9M-otYavXuoOb9fqE_opVzOh7P7zw4ivwEHz3Ni
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Submodular+%2B+Supermodular+function+maximization+with+knapsack+constraint&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Shi%2C+Majun&rft.au=Yang%2C+Zishen&rft.au=Wang%2C+Wei&rft.date=2025-12-31&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.volume=377&rft.spage=113&rft.epage=133&rft_id=info:doi/10.1016%2Fj.dam.2025.06.062&rft.externalDocID=S0166218X25003786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon