A primal-dual algorithm for monotone submodular maximization

In this paper we design and analyze a new approximation algorithm for the classic discrete optimization problem of maximizing a monotone submodular function subject to a cardinality constraint. Our algorithm is based on the primal-dual schema and achieves the optimal factor of (1−1/e). While greedy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations research letters Ročník 65; s. 107387
Hlavní autoři: Chakrabarty, Deeparnab, Coté, Luc
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2026
Témata:
ISSN:0167-6377
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we design and analyze a new approximation algorithm for the classic discrete optimization problem of maximizing a monotone submodular function subject to a cardinality constraint. Our algorithm is based on the primal-dual schema and achieves the optimal factor of (1−1/e). While greedy algorithms have been known to achieve this approximation factor, our algorithms also provide a dual certificate which upper bounds the optimum value of any instance. This certificate can be used to certify instance-wise guarantees potentially much better than the worst-case (1−1/e) approximation factor.
ISSN:0167-6377
DOI:10.1016/j.orl.2025.107387