A primal-dual algorithm for monotone submodular maximization
In this paper we design and analyze a new approximation algorithm for the classic discrete optimization problem of maximizing a monotone submodular function subject to a cardinality constraint. Our algorithm is based on the primal-dual schema and achieves the optimal factor of (1−1/e). While greedy...
Gespeichert in:
| Veröffentlicht in: | Operations research letters Jg. 65; S. 107387 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.03.2026
|
| Schlagworte: | |
| ISSN: | 0167-6377 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper we design and analyze a new approximation algorithm for the classic discrete optimization problem of maximizing a monotone submodular function subject to a cardinality constraint. Our algorithm is based on the primal-dual schema and achieves the optimal factor of (1−1/e). While greedy algorithms have been known to achieve this approximation factor, our algorithms also provide a dual certificate which upper bounds the optimum value of any instance. This certificate can be used to certify instance-wise guarantees potentially much better than the worst-case (1−1/e) approximation factor. |
|---|---|
| ISSN: | 0167-6377 |
| DOI: | 10.1016/j.orl.2025.107387 |