A primal-dual algorithm for monotone submodular maximization

In this paper we design and analyze a new approximation algorithm for the classic discrete optimization problem of maximizing a monotone submodular function subject to a cardinality constraint. Our algorithm is based on the primal-dual schema and achieves the optimal factor of (1−1/e). While greedy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research letters Jg. 65; S. 107387
Hauptverfasser: Chakrabarty, Deeparnab, Coté, Luc
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2026
Schlagworte:
ISSN:0167-6377
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we design and analyze a new approximation algorithm for the classic discrete optimization problem of maximizing a monotone submodular function subject to a cardinality constraint. Our algorithm is based on the primal-dual schema and achieves the optimal factor of (1−1/e). While greedy algorithms have been known to achieve this approximation factor, our algorithms also provide a dual certificate which upper bounds the optimum value of any instance. This certificate can be used to certify instance-wise guarantees potentially much better than the worst-case (1−1/e) approximation factor.
ISSN:0167-6377
DOI:10.1016/j.orl.2025.107387