Reinforcement learning approach to the control of heavy material handling manipulators for agricultural robots

In this paper, we consider the optimal control problem of heavy material handling manipulators for agricultural robots. Unlike the existing results on agricultural robots, the robot parameters may be unknown for the designer in this paper. To learn the linear quadratic control gain under unknown rob...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & electrical engineering Ročník 104; s. 108433
Hlavní autoři: Wu, Xiaoming, Chi, Jing, Jin, Xiao-Zheng, Deng, Chao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2022
Témata:
ISSN:0045-7906, 1879-0755
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider the optimal control problem of heavy material handling manipulators for agricultural robots. Unlike the existing results on agricultural robots, the robot parameters may be unknown for the designer in this paper. To learn the linear quadratic control gain under unknown robot parameters, two reinforcement learning algorithms, i.e., policy iteration (PI) algorithm and value iteration (VI) algorithm, are proposed. Then, through combining the advantages of PI algorithm and VI algorithm, i.e., satisfactory convergence rate and without the restriction on feasibility initial control policy, respectively, a hybrid iteration (HI) algorithm is proposed, which can both achieve a satisfactory convergence rate and remove restrictions on feasibility initial control policy. It is shown that the convergence of the proposed HI algorithm can be achieved in theory. Finally, a simulation example is given to show that our designed HI algorithm can achieve a satisfactory simulation time.
ISSN:0045-7906
1879-0755
DOI:10.1016/j.compeleceng.2022.108433