Reinforcement learning approach to the control of heavy material handling manipulators for agricultural robots

In this paper, we consider the optimal control problem of heavy material handling manipulators for agricultural robots. Unlike the existing results on agricultural robots, the robot parameters may be unknown for the designer in this paper. To learn the linear quadratic control gain under unknown rob...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & electrical engineering Ročník 104; s. 108433
Hlavní autori: Wu, Xiaoming, Chi, Jing, Jin, Xiao-Zheng, Deng, Chao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2022
Predmet:
ISSN:0045-7906, 1879-0755
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we consider the optimal control problem of heavy material handling manipulators for agricultural robots. Unlike the existing results on agricultural robots, the robot parameters may be unknown for the designer in this paper. To learn the linear quadratic control gain under unknown robot parameters, two reinforcement learning algorithms, i.e., policy iteration (PI) algorithm and value iteration (VI) algorithm, are proposed. Then, through combining the advantages of PI algorithm and VI algorithm, i.e., satisfactory convergence rate and without the restriction on feasibility initial control policy, respectively, a hybrid iteration (HI) algorithm is proposed, which can both achieve a satisfactory convergence rate and remove restrictions on feasibility initial control policy. It is shown that the convergence of the proposed HI algorithm can be achieved in theory. Finally, a simulation example is given to show that our designed HI algorithm can achieve a satisfactory simulation time.
ISSN:0045-7906
1879-0755
DOI:10.1016/j.compeleceng.2022.108433