SIFAT-SIFAT SPEKTRAL DAN STRUKTUR KOMBINATORIK PADA SISTEM POSITIF 2D
The dynamics of a 2D positive system depends on the pair of nonnegative square matrices thatprovide the updating of its local states. In this paper, several spectral properties, like finitememory, separablility and property L, which depend on the characteristic polynomial of thepair, are investigate...
Uloženo v:
| Vydáno v: | BAREKENG: Jurnal Ilmu Matematika dan Terapan Ročník 5; číslo 1; s. 21 - 27 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Universitas Pattimura
01.03.2011
|
| Témata: | |
| ISSN: | 1978-7227, 2615-3017 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The dynamics of a 2D positive system depends on the pair of nonnegative square matrices thatprovide the updating of its local states. In this paper, several spectral properties, like finitememory, separablility and property L, which depend on the characteristic polynomial of thepair, are investigated under the nonnegativity constraint and in connection with thecombinatorial structure of the matrices.Some aspects of the Perron-Frobenius theory are extended to the 2D case; in particular,conditions are provided guaranteeing the existence of a common maximal eigenvector for twononnegative matrices with irreducible sum. Finally, some results on 2D positive realizationsare presented |
|---|---|
| ISSN: | 1978-7227 2615-3017 |
| DOI: | 10.30598/barekengvol5iss1pp21-27 |