SIFAT-SIFAT SPEKTRAL DAN STRUKTUR KOMBINATORIK PADA SISTEM POSITIF 2D

The dynamics of a 2D positive system depends on the pair of nonnegative square matrices thatprovide the updating of its local states. In this paper, several spectral properties, like finitememory, separablility and property L, which depend on the characteristic polynomial of thepair, are investigate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BAREKENG: Jurnal Ilmu Matematika dan Terapan Ročník 5; číslo 1; s. 21 - 27
Hlavní autor: MATAKUPAN, RUDY WOLTER
Médium: Journal Article
Jazyk:angličtina
Vydáno: Universitas Pattimura 01.03.2011
Témata:
ISSN:1978-7227, 2615-3017
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The dynamics of a 2D positive system depends on the pair of nonnegative square matrices thatprovide the updating of its local states. In this paper, several spectral properties, like finitememory, separablility and property L, which depend on the characteristic polynomial of thepair, are investigated under the nonnegativity constraint and in connection with thecombinatorial structure of the matrices.Some aspects of the Perron-Frobenius theory are extended to the 2D case; in particular,conditions are provided guaranteeing the existence of a common maximal eigenvector for twononnegative matrices with irreducible sum. Finally, some results on 2D positive realizationsare presented
ISSN:1978-7227
2615-3017
DOI:10.30598/barekengvol5iss1pp21-27