Photo-realistic photo synthesis using improved conditional generative adversarial networks
There are a wide range of potential uses for both the forward (generating face drawings from actual images) and backward (generating photos from synthetic face sketches). However, photo/sketch synthesis is still a difficult problem to solve because of the distinct differences between photos and sket...
Uložené v:
| Vydané v: | IAES international journal of artificial intelligence Ročník 13; číslo 1; s. 516 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.03.2024
|
| ISSN: | 2089-4872, 2252-8938 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | There are a wide range of potential uses for both the forward (generating face drawings from actual images) and backward (generating photos from synthetic face sketches). However, photo/sketch synthesis is still a difficult problem to solve because of the distinct differences between photos and sketches. Existing frameworks often struggle to acquire a strong mapping among the geometry of drawing and its corresponding photo-realistic pictures because of the little amount of paired sketch-photo training data available. In this study, we adopt the perspective that this is an image-to-image translation issue and investigate the usage of the well-known enhanced pix2pix generative adversarial networks (GANs) to generate high-quality photo-realistic pictures from drawings; we make use of three distinct datasets. While recent GAN-based approaches have shown promise in image translation, they still struggle to produce high-resolution, photorealistic pictures. This technique uses supervised learning to train the generator's hidden layers to produce low-resolution pictures initially, then uses the network's implicit refinement to produce high-resolution images. Extensive tests on three sketch-photo datasets (two publicly accessible and one we produced) are used to evaluate. Our solution outperforms existing image translation techniques by producing more photorealistic visuals with a peak signal-to-noise ratio of 59.85% and pixel accuracy of 82.7%. |
|---|---|
| AbstractList | There are a wide range of potential uses for both the forward (generating face drawings from actual images) and backward (generating photos from synthetic face sketches). However, photo/sketch synthesis is still a difficult problem to solve because of the distinct differences between photos and sketches. Existing frameworks often struggle to acquire a strong mapping among the geometry of drawing and its corresponding photo-realistic pictures because of the little amount of paired sketch-photo training data available. In this study, we adopt the perspective that this is an image-to-image translation issue and investigate the usage of the well-known enhanced pix2pix generative adversarial networks (GANs) to generate high-quality photo-realistic pictures from drawings; we make use of three distinct datasets. While recent GAN-based approaches have shown promise in image translation, they still struggle to produce high-resolution, photorealistic pictures. This technique uses supervised learning to train the generator's hidden layers to produce low-resolution pictures initially, then uses the network's implicit refinement to produce high-resolution images. Extensive tests on three sketch-photo datasets (two publicly accessible and one we produced) are used to evaluate. Our solution outperforms existing image translation techniques by producing more photorealistic visuals with a peak signal-to-noise ratio of 59.85% and pixel accuracy of 82.7%. |
| Author | Mandara Kirimanjeshwara, Raghavendra Shetty Prasad, Sarappadi Narasimha |
| Author_xml | – sequence: 1 givenname: Raghavendra Shetty orcidid: 0000-0001-9489-4348 surname: Mandara Kirimanjeshwara fullname: Mandara Kirimanjeshwara, Raghavendra Shetty – sequence: 2 givenname: Sarappadi Narasimha orcidid: 0000-0002-8304-8506 surname: Prasad fullname: Prasad, Sarappadi Narasimha |
| BookMark | eNot0E1OwzAQBWALFYlSegWUCyRk7Dq2l6jiT6oEC9iwsdxk3A60dmSHoN6eUljNm7d4i--STUIMyNg11BWANHBDH46qEURFUPW9hKaUXJyxKeeSl9oIPTnmWptyoRW_YPOcaV0DGK6lUVP2_rKNQywTuh3lgdqi__2LfAjDFjPl4itT2BS071McsSvaGDoaKAa3KzYYMLmBRixcN2LKLtGxDjh8x_SZr9i5d7uM8_87Y2_3d6_Lx3L1_PC0vF2VLTRSlEpqA1J3dYvdgmsHBoWSoLzxTiq-dq1UncJ64ZXgiN41IBrRNop7L1CCmLHmb7dNMeeE3vaJ9i4dLNT2hGR_kewRyRLYE5I9Iokf7eNh6w |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.11591/ijai.v13.i1.pp516-523 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2252-8938 |
| ExternalDocumentID | 10_11591_ijai_v13_i1_pp516_523 |
| GroupedDBID | 8FE 8FG AAKDD AAYXX ABUWG AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- P62 PHGZM PHGZT PQGLB PQQKQ PROAC RNS |
| ID | FETCH-LOGICAL-c1653-7589158d0ced428a19e37517f9fa572bac57d7e04f732eefa61363c672ff3e513 |
| ISSN | 2089-4872 |
| IngestDate | Sat Nov 29 05:33:40 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1653-7589158d0ced428a19e37517f9fa572bac57d7e04f732eefa61363c672ff3e513 |
| ORCID | 0000-0002-8304-8506 0000-0001-9489-4348 |
| OpenAccessLink | https://ijai.iaescore.com/index.php/IJAI/article/download/23094/13853 |
| ParticipantIDs | crossref_primary_10_11591_ijai_v13_i1_pp516_523 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IAES international journal of artificial intelligence |
| PublicationYear | 2024 |
| SSID | ssib011928597 ssib033899589 ssj0001341662 ssib044738854 |
| Score | 2.2482884 |
| Snippet | There are a wide range of potential uses for both the forward (generating face drawings from actual images) and backward (generating photos from synthetic face... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 516 |
| Title | Photo-realistic photo synthesis using improved conditional generative adversarial networks |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044738854 issn: 2089-4872 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: P5Z dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: K7- dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: East & South Asia Database (ProQuest) customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BVBZV dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbtIde-i59o0NvwYktWZZ0DCWlpSUsJC2hF6PYUqyQeM3a2eaP9f91JPlFUkpzKCxmV96d3fV8nhmNRt8g9B48Lti4mEdlmpIoVRJuKXXCIm1EkphEG-aXC75_5QcH4vhYLheLX8NemM05r2txdSWb_6pqGANlu62zt1D3KBQG4DkoHY6gdjj-k-KX1apbRRALnnsO5u3GvXbMBBDqOfaRS58dsD6ZoN2eNrdoHRKCp56D2hcTKdeouVW-p0cdSsXbeSD7eW__0HNNTOnEGQmF-1k9NYWdcX5O6W-XvlDbX6zjuqjPdFv9VOsQxqrTynW4L-H0YaW7bkz5L9eqVWMWu2lUacE3wKC9qNQ8eUHSqXor2DgSCxnBnCkYZB3GCAMjLQPpy2ik6Q0wBovLwlbNm56ASecK7JmyO5uE7lhwSQ282c28J983rPdfc4ljoaKfIoGk3MnJQU5uk9zLyUHOHXSXcDjragF4NJixBIJmwabFWeooDNlE6p-mnArRR3E-FQiRROZb346Xo9_L7r56949_YRZGzeKho0foQT-RwXsBgI_RQtdP0MOhSQjufcZT9OMaHrHHIx7xiD0e8YBHPMMjnvCIZ3jEAx6foW8f948-fIr6hh5RkWSMRty1sGSijAtdwrRXJVJTzhJupFGMkxNVMF5yHaeGU6K1URBrZrTIODGGapbQ52irXtX6BcLC9eIojBasJKkxpZCKFMbAI5aCZeIl2h2uT94E3pb878p8detPvEb3J0y_QVvd-lK_RfeKTWfb9TuPid_4Vpgf |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photo-realistic+photo+synthesis+using+improved+conditional+generative+adversarial+networks&rft.jtitle=IAES+international+journal+of+artificial+intelligence&rft.au=Mandara+Kirimanjeshwara%2C+Raghavendra+Shetty&rft.au=Prasad%2C+Sarappadi+Narasimha&rft.date=2024-03-01&rft.issn=2089-4872&rft.eissn=2252-8938&rft.volume=13&rft.issue=1&rft.spage=516&rft_id=info:doi/10.11591%2Fijai.v13.i1.pp516-523&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijai_v13_i1_pp516_523 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon |