Depth Descent Synchronization in $${{\,\mathrm{\text {SO}}\,}}(D)

We give robust recovery results for synchronization on the rotation group, [Formula omitted]. In particular, we consider an adversarial corruption setting, where a limited percentage of the observations are arbitrarily corrupted. We develop a novel algorithm that exploits Tukey depth in the tangent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision Jg. 131; H. 4; S. 968 - 986
Hauptverfasser: Maunu, Tyler, Lerman, Gilad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Springer 01.04.2023
Schlagworte:
ISSN:0920-5691, 1573-1405
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give robust recovery results for synchronization on the rotation group, [Formula omitted]. In particular, we consider an adversarial corruption setting, where a limited percentage of the observations are arbitrarily corrupted. We develop a novel algorithm that exploits Tukey depth in the tangent space of [Formula omitted]. This algorithm, called Depth Descent Synchronization, exactly recovers the underlying rotations up to an outlier percentage of [Formula omitted], which corresponds to 1/4 for [Formula omitted] and 1/8 for [Formula omitted]. In the case of [Formula omitted], we demonstrate that a variant of this algorithm converges linearly to the ground truth rotations. We implement this algorithm for the case of [Formula omitted] and demonstrate that it performs competitively on baseline synthetic data.
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-022-01686-6