Depth Descent Synchronization in $${{\,\mathrm{\text {SO}}\,}}(D)
We give robust recovery results for synchronization on the rotation group, [Formula omitted]. In particular, we consider an adversarial corruption setting, where a limited percentage of the observations are arbitrarily corrupted. We develop a novel algorithm that exploits Tukey depth in the tangent...
Gespeichert in:
| Veröffentlicht in: | International journal of computer vision Jg. 131; H. 4; S. 968 - 986 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Springer
01.04.2023
|
| Schlagworte: | |
| ISSN: | 0920-5691, 1573-1405 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We give robust recovery results for synchronization on the rotation group, [Formula omitted]. In particular, we consider an adversarial corruption setting, where a limited percentage of the observations are arbitrarily corrupted. We develop a novel algorithm that exploits Tukey depth in the tangent space of [Formula omitted]. This algorithm, called Depth Descent Synchronization, exactly recovers the underlying rotations up to an outlier percentage of [Formula omitted], which corresponds to 1/4 for [Formula omitted] and 1/8 for [Formula omitted]. In the case of [Formula omitted], we demonstrate that a variant of this algorithm converges linearly to the ground truth rotations. We implement this algorithm for the case of [Formula omitted] and demonstrate that it performs competitively on baseline synthetic data. |
|---|---|
| ISSN: | 0920-5691 1573-1405 |
| DOI: | 10.1007/s11263-022-01686-6 |