Using machine learning paradigm to predict CBR value of treated expansive soil
The California bearing ratio (CBR) value is a fundamental property used to characterise the strength of the subgrade in road pavement design. CBR calculation in the laboratory is complex, time-consuming, costly, and requires careful execution. A machine learning approach is used to predict CBR of so...
Uloženo v:
| Vydáno v: | Geotechnical research Ročník 12; číslo 4; s. 186 - 201 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
27.11.2025
|
| ISSN: | 2052-6156, 2052-6156 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The California bearing ratio (CBR) value is a fundamental property used to characterise the strength of the subgrade in road pavement design. CBR calculation in the laboratory is complex, time-consuming, costly, and requires careful execution. A machine learning approach is used to predict CBR of soil treated with hydrated-lime activated rice husk ash (HARHA). The prediction uses an algorithmic approach on A-7-6 expansive soil treated with HARHA, added from 0.1% to 12% in 0.1% increments. Using this approach, 121 distinct data sets were produced in the laboratory which are used to accomplish the stated goals. The data set includes six input parameters: HARHA, liquid-limit, plastic-limit, optimum moisture content, clayey activity, maximum dry density and one output: CBR value. Various models were used, including artificial neural networks (ANN), support vector machine (SVM), Gaussian process regression (GPR), and random forest (RF). The models’ performance was evaluated using statistical measures including coefficient of determination, mean absolute error, root mean square error, relative absolute error, and root relative squared error. The evaluation indicates that the RF model had superior predictive performance followed by ANN, SVM, and GPR model. Moreover, sensitivity analysis shows that maximum dry density is the most influential factor on CBR value. |
|---|---|
| AbstractList | The California bearing ratio (CBR) value is a fundamental property used to characterise the strength of the subgrade in road pavement design. CBR calculation in the laboratory is complex, time-consuming, costly, and requires careful execution. A machine learning approach is used to predict CBR of soil treated with hydrated-lime activated rice husk ash (HARHA). The prediction uses an algorithmic approach on A-7-6 expansive soil treated with HARHA, added from 0.1% to 12% in 0.1% increments. Using this approach, 121 distinct data sets were produced in the laboratory which are used to accomplish the stated goals. The data set includes six input parameters: HARHA, liquid-limit, plastic-limit, optimum moisture content, clayey activity, maximum dry density and one output: CBR value. Various models were used, including artificial neural networks (ANN), support vector machine (SVM), Gaussian process regression (GPR), and random forest (RF). The models’ performance was evaluated using statistical measures including coefficient of determination, mean absolute error, root mean square error, relative absolute error, and root relative squared error. The evaluation indicates that the RF model had superior predictive performance followed by ANN, SVM, and GPR model. Moreover, sensitivity analysis shows that maximum dry density is the most influential factor on CBR value. |
| Author | Azab, Marc Jamil, Irfan Jamal, Hamza Khan, Muhammad Bilal Accouche, Oussama Ahmad, Umair |
| Author_xml | – sequence: 1 givenname: Umair surname: Ahmad fullname: Ahmad, Umair – sequence: 2 givenname: Irfan surname: Jamil fullname: Jamil, Irfan – sequence: 3 givenname: Hamza surname: Jamal fullname: Jamal, Hamza – sequence: 4 givenname: Muhammad Bilal surname: Khan fullname: Khan, Muhammad Bilal – sequence: 5 givenname: Oussama surname: Accouche fullname: Accouche, Oussama – sequence: 6 givenname: Marc surname: Azab fullname: Azab, Marc |
| BookMark | eNpNkEtLAzEcxINUsNZePecL7Jpks3kcdfEFRUHseckm_6wp-yJZi3572-rB0wzDMDC_S7QYxgEQuqYkp0KRm10LEXLGc0KIEGdoyUjJMkFLsfjnL9A6pd2hQjWjVMoletmmMLS4N_YjDIA7MHE4BpOJxoW2x_OIpwgu2BlXd294b7pPwKPHcwQzg8PwNZkhhT3gNIbuCp170yVY_-kKbR_u36unbPP6-FzdbjJLBZ8z66WX2jOui0YWXhFrmZZaKwel49RYYyUvTHN4BkqQhhZcKUW8VU4IKFWxQvnvro1jShF8PcXQm_hdU1IfgdQnIDXj9QlI8QN19VZY |
| Cites_doi | 10.3390/app9204226 10.1023/A:1010933404324 10.1007/BF01045717 10.1016/j.procs.2020.03.336 10.48550/arXiv.2003.05689 10.1088/1757-899X/671/1/012106 10.1007/s12517-022-10468-w 10.1007/s10706-018-0548-1 10.3390/app12042126 10.1109/RTEICT42901.2018.9012507 10.1016/j.eswa.2010.12.054 10.1016/j.compgeo.2007.06.004 10.1007/s12594-020-1409-0 10.5194/nhess-5-853-2005 10.1016/j.asoc.2021.107595 10.1016/S0167-7012(00)00201-3 10.1080/15715124.2019.1680557 10.9790/1684-11512630 10.1007/s12205-014-0137-7 10.48550/arXiv.1811.12808 10.3390/app112110317 10.3390/ijgi7070268 10.3390/ma14216516 10.1007/s42947-020-0249-z 10.1016/j.apenergy.2008.12.020 10.1186/s40703-019-0102-x 10.1007/s00521-015-1943-7 10.1016/S0164-1212(00)00005-4 10.3390/app11136167 10.3390/s22228699 10.1016/j.advengsoft.2010.01.003 10.3141/2167-07 10.1007/s13369-019-04046-8 10.25130/tjes.27.1.08 10.1155/2021/6686347 10.17159/2309-8775/2021/v63n2a6 10.1007/s13369-021-05809-y 10.1080/14680629.2018.1544924 10.1093/ajcp/aqw064 10.1016/j.enggeo.2021.106239 10.3390/ijerph15122907 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1680/jgere.24.00066 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2052-6156 |
| EndPage | 201 |
| ExternalDocumentID | 10_1680_jgere_24_00066 |
| GroupedDBID | 5VS AADDD AAYXX ADBBV ADDPR ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION EBS GEI GROUPED_DOAJ M~E OK1 RTT |
| ID | FETCH-LOGICAL-c164t-cf7f79f2493b73f80cc297998de5d41acac743ab680e860b1348880fc8d66e583 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001568495600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2052-6156 |
| IngestDate | Thu Nov 27 00:25:53 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://creativecommons.org/licences/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c164t-cf7f79f2493b73f80cc297998de5d41acac743ab680e860b1348880fc8d66e583 |
| OpenAccessLink | https://www.emerald.com/jgere/article-pdf/doi/10.1680/jgere.24.00066/10277163/jgere.24.00066en.pdf |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1680_jgere_24_00066 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-27 |
| PublicationDateYYYYMMDD | 2025-11-27 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Geotechnical research |
| PublicationYear | 2025 |
| References | Ferentinou (2025112503262512500_ref021) 2007; 34 Merghadi (2025112503262512500_ref035) 2018; 7 Rafizul (2025112503262512500_ref045) 2020; 11 Luo (2025112503262512500_ref033) 2016; 145 Chen (2025112503262512500_ref019) 2004; 5 Amershi (2025112503262512500_ref008) 2015 Bresfelean (2025112503262512500_ref012) 2007 Paige-Green (2025112503262512500_ref041) 2009; 2 Talukdar (2025112503262512500_ref052) 2014; 4 González Farias (2025112503262512500_ref022) 2018; 36 Kurt (2025112503262512500_ref031) 2009; 86 Kişi (2025112503262512500_ref029) 2005; 12 Tenpe (2025112503262512500_ref053) 2020; 21 Yildirim (2025112503262512500_ref058) 2011; 38 Bardhan (2025112503262512500_ref017) 2021; 110 Islam (2025112503262512500_ref025) 2020 Kecman (2025112503262512500_ref027) 2005 Yu (2025112503262512500_ref059) 2020 Ali (2025112503262512500_ref007) 2022; 22 Sabat (2025112503262512500_ref048) 2015; 20 Mishra (2025112503262512500_ref036) 2010; 2167 Raza (2025112503262512500_ref1) 2021; 46 Abdulnabi (2025112503262512500_ref001) 2020; 27 Brenning (2025112503262512500_ref011) 2005; 5 Onyelowe (2025112503262512500_ref038) 2019 Ahmad (2025112503262512500_ref002) 2021; 11 Shirur (2025112503262512500_ref049) 2014; 11 Bhatt (2025112503262512500_ref018) 2014; 8 Mair (2025112503262512500_ref034) 2000; 53 Peshkin (2025112503262512500_ref042) 2004 Al-Busultan (2025112503262512500_ref006) 2020; 671 Amjad (2025112503262512500_ref009) 2022; 12 Breiman (2025112503262512500_ref010) 2001; 45 Yang (2025112503262512500_ref057) 1997; 30 Onyelowe (2025112503262512500_ref039) 2020; 72 Bannach-Brown (2025112503262512500_ref015) 2019; 8 Kumar (2025112503262512500_ref030) 2018; 15 Thives (2025112503262512500_ref054) 2022; 15 Kumar (2025112503262512500_ref032) 2013; 2 Raschka (2025112503262512500_ref044) 2018 Bardhan (2025112503262512500_ref016) 2021; 291 Ikechukwu (2025112503262512500_ref024) 2020; 13 Smithson (2025112503262512500_ref050) 2016 Taskiran (2025112503262512500_ref051) 2010; 41 Ahmad (2025112503262512500_ref004) 2019; 9 Kuttah (2025112503262512500_ref028) 2019; 10 Ahmad (2025112503262512500_ref003) 2021; 11 Botchkarev (2025112503262512500_ref013) 2018 Mousavi (2025112503262512500_ref037) 2014; 18 Trong (2025112503262512500_ref056) 2021; 14 Jogin (2025112503262512500_ref026) 2018 Haupt (2025112503262512500_ref023) 2021; 63 Basheer (2025112503262512500_ref014) 2000; 43 Erzin (2025112503262512500_ref020) 2016; 27 Alam (2025112503262512500_ref005) 2020; 95 Onyelowe (2025112503262512500_ref040) 2021; 2021 Rehman (2025112503262512500_ref047) 2017; 22 2025112503262512500_ref043 Roy (2025112503262512500_ref046) 2020; 18 Taha (2025112503262512500_ref2) 2019; 44 Tigga (2025112503262512500_ref055) 2020; 167 |
| References_xml | – volume: 9 start-page: 4226 issue: (20) year: 2019 ident: 2025112503262512500_ref004 article-title: Evaluating seismic soil liquefaction potential using Bayesian belief network and C4.5 decision tree approaches publication-title: Applied Sciences doi: 10.3390/app9204226 – volume: 45 start-page: 5 issue: (1) year: 2001 ident: 2025112503262512500_ref010 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 30 start-page: 207 issue: (4) year: 1997 ident: 2025112503262512500_ref057 article-title: A hierarchical analysis for rock engineering using artificial neural networks publication-title: Rock Mechanics and Rock Engineering doi: 10.1007/BF01045717 – volume: 167 start-page: 706 year: 2020 ident: 2025112503262512500_ref055 article-title: Prediction of type 2 diabetes using machine learning classification methods publication-title: Procedia Computer Science doi: 10.1016/j.procs.2020.03.336 – year: 2020 ident: 2025112503262512500_ref059 article-title: Hyper-parameter optimization: a review of algorithms and applications publication-title: Computer Science Machine Learning doi: 10.48550/arXiv.2003.05689 – year: 2018 ident: 2025112503262512500_ref013 article-title: Performance metrics (error measures) in machine learning regression, forecasting and prognostics: properties and typology publication-title: arXiv Preprint – volume: 671 start-page: 012106 issue: (1) year: 2020 ident: 2025112503262512500_ref006 article-title: Application of artificial neural networks in predicting subbase CBR values using soil indices data. In publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/671/1/012106 – volume: 15 start-page: 1224 issue: (13) year: 2022 ident: 2025112503262512500_ref054 article-title: Methodology of layers’ compaction control through dynamic cone penetrometer (DCP) publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-022-10468-w – volume: 36 start-page: 3485 issue: (6) year: 2018 ident: 2025112503262512500_ref022 article-title: Prediction of California bearing ratio from index properties of soils using parametric and non-parametric models publication-title: Geotechnical and Geological Engineering doi: 10.1007/s10706-018-0548-1 – volume: 12 start-page: 2126 issue: (4) year: 2022 ident: 2025112503262512500_ref009 article-title: Prediction of pile bearing capacity using XGBoost algorithm: modeling and performance evaluation publication-title: Applied Sciences doi: 10.3390/app12042126 – start-page: 2319 volume-title: 2018 3rd IEEE international conference on recent trends in electronics, information & communication technology (RTEICT) year: 2018 ident: 2025112503262512500_ref026 article-title: Feature extraction using convolution neural networks (CNN) and deep learning doi: 10.1109/RTEICT42901.2018.9012507 – volume: 38 start-page: 6381 issue: (5) year: 2011 ident: 2025112503262512500_ref058 article-title: Estimation of California bearing ratio by using soft computing systems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.12.054 – volume: 34 start-page: 362 issue: (5) year: 2007 ident: 2025112503262512500_ref021 article-title: Computational intelligence tools for the prediction of slope performance publication-title: Computers and Geotechnics doi: 10.1016/j.compgeo.2007.06.004 – volume: 95 start-page: 190 issue: (2) year: 2020 ident: 2025112503262512500_ref005 article-title: Prediction of CBR value of fine grained soils of Bengal Basin by genetic expression programming, artificial neural network and Krigging method publication-title: Journal of the Geological Society of India doi: 10.1007/s12594-020-1409-0 – volume: 5 start-page: 853 issue: (6) year: 2005 ident: 2025112503262512500_ref011 article-title: Spatial prediction models for landslide hazards: review, comparison and evaluation publication-title: Natural Hazards and Earth System Sciences doi: 10.5194/nhess-5-853-2005 – volume: 110 start-page: 107595 year: 2021 ident: 2025112503262512500_ref017 article-title: ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107595 – start-page: 28 volume-title: Journal of Civil Engineering year: 2020 ident: 2025112503262512500_ref025 – volume: 43 start-page: 3 issue: (1) year: 2000 ident: 2025112503262512500_ref014 article-title: Artificial neural networks: fundamentals, computing, design, and application publication-title: Journal of Microbiological Methods doi: 10.1016/S0167-7012(00)00201-3 – volume: 18 start-page: 49 issue: (1) year: 2020 ident: 2025112503262512500_ref046 article-title: An empirical-based rainfall-runoff modelling using optimization technique publication-title: International Journal of River Basin Management doi: 10.1080/15715124.2019.1680557 – volume: 11 start-page: 26 issue: (5) year: 2014 ident: 2025112503262512500_ref049 article-title: Establishing relationship between CBR value and physical properties of soil publication-title: IOSR Journal of Mechanical and Civil Engineering doi: 10.9790/1684-11512630 – start-page: 1 year: 2016 ident: 2025112503262512500_ref050 article-title: Neural networks designing neural networks: multi-objective hyper-parameter optimization – volume: 18 start-page: 2064 issue: (7) year: 2014 ident: 2025112503262512500_ref037 article-title: Effect of polymer stabilizer on swelling potential and CBR of forest road material publication-title: KSCE Journal of Civil Engineering doi: 10.1007/s12205-014-0137-7 – volume-title: Optimal Timing of Pavement Preventive Maintenance Treatment Applications. year: 2004 ident: 2025112503262512500_ref042 – start-page: 51 year: 2007 ident: 2025112503262512500_ref012 article-title: Analysis and predictions on students' behavior using decision trees in Weka environment – year: 2018 ident: 2025112503262512500_ref044 article-title: Model evaluation, model selection, and algorithm selection in machine learning publication-title: Computer Science Machine Learning doi: 10.48550/arXiv.1811.12808 – volume: 4 start-page: 559 issue: (1) year: 2014 ident: 2025112503262512500_ref052 article-title: A study of correlation between California bearing ratio (CBR) value with other properties of soil publication-title: International Journal of Emerging Technology and Advanced Engineering – volume: 11 start-page: 10317 issue: (21) year: 2021 ident: 2025112503262512500_ref002 article-title: Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: a Gaussian process regression approach publication-title: Applied Sciences doi: 10.3390/app112110317 – start-page: 58 volume-title: Oxides of carbon entrapment for environmental friendly geomaterials ash derivation year: 2019 ident: 2025112503262512500_ref038 – volume: 7 start-page: 268 issue: (7) year: 2018 ident: 2025112503262512500_ref035 article-title: Landslide susceptibility assessment at Mila Basin (Algeria): a comparative assessment of prediction capability of advanced machine learning methods publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7070268 – start-page: 337 year: 2015 ident: 2025112503262512500_ref008 article-title: Modeltracker: Redesigning performance analysis tools for machine learning – volume: 8 start-page: 12 issue: (1) year: 2019 ident: 2025112503262512500_ref015 article-title: Machine learning algorithms for systematic review: reducing workload in a preclinical review of animal studies and reducing human screening error publication-title: Systematic Reviews – volume: 14 start-page: 6516 issue: (21) year: 2021 ident: 2025112503262512500_ref056 article-title: On random subspace optimization-based hybrid computing models predicting the California bearing ratio of soils publication-title: Materials (Basel, Switzerland) doi: 10.3390/ma14216516 – volume: 20 start-page: 981 issue: (3) year: 2015 ident: 2025112503262512500_ref048 article-title: Prediction of California bearing ratio of a stabilized expansive soil using artificial neural network and support vector machine publication-title: Electron. J. Geotech. Eng – volume: 13 start-page: 466 issue: (5) year: 2020 ident: 2025112503262512500_ref024 article-title: Performance assessment of pavement structure using dynamics cone penetrometer (DCP) publication-title: International Journal of Pavement Research and Technology doi: 10.1007/s42947-020-0249-z – volume: 5 start-page: 1143 year: 2004 ident: 2025112503262512500_ref019 article-title: Support vector machine soft margin classifiers: error analysis publication-title: Journal of Machine Learning Research – volume: 86 start-page: 2244 issue: (10) year: 2009 ident: 2025112503262512500_ref031 article-title: Prediction of thermal conductivity of ethylene glycol–water solutions by using artificial neural networks publication-title: Applied Energy doi: 10.1016/j.apenergy.2008.12.020 – volume: 11 issue: (1) year: 2020 ident: 2025112503262512500_ref045 article-title: Prediction of California bearing ratio of fine-grained soil stabilized with admixtures using soft computing systems publication-title: Journal of Civil Engineering – volume: 10 start-page: 7 issue: (1) year: 2019 ident: 2025112503262512500_ref028 article-title: Strong correlation between the laboratory dynamic CBR and the compaction characteristics of sandy soil publication-title: International Journal of Geo-Engineering doi: 10.1186/s40703-019-0102-x – volume: 2 year: 2009 ident: 2025112503262512500_ref041 article-title: Use and interpretation of the dynamic cone penetrometer (DCP) test publication-title: CSIR Built Environment Pretoria – volume: 27 start-page: 1415 issue: (5) year: 2016 ident: 2025112503262512500_ref020 article-title: Use of neural networks for the prediction of the CBR value of some Aegean sands publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1943-7 – volume: 53 start-page: 23 issue: (1) year: 2000 ident: 2025112503262512500_ref034 article-title: An investigation of machine learning based prediction systems publication-title: Journal of Systems and Software doi: 10.1016/S0164-1212(00)00005-4 – volume: 2 start-page: 3019 issue: (6) year: 2013 ident: 2025112503262512500_ref032 article-title: Application of machine learning techniques to predict soaked CBR of remolded soils publication-title: International Journal of Engineering Research & Technology (IJERT) – volume: 11 start-page: 6167 issue: (13) year: 2021 ident: 2025112503262512500_ref003 article-title: Development of prediction models for shear strength of rockfill material using machine learning techniques publication-title: Applied Sciences doi: 10.3390/app11136167 – volume: 22 start-page: 8699 issue: (22) year: 2022 ident: 2025112503262512500_ref007 article-title: A machine learning architecture replacing heavy instrumented laboratory tests: in application to the pullout capacity of geosynthetic reinforced soils publication-title: Sensors (Basel, Switzerland) doi: 10.3390/s22228699 – ident: 2025112503262512500_ref043 – volume: 8 start-page: 156 issue: (2) year: 2014 ident: 2025112503262512500_ref018 article-title: Prediction of California bearing ratio of soils using artificial neural network publication-title: Am. Int. J. Res. Sci. Technol. Eng. Math – start-page: 49 volume-title: Real World Applications of Computational Intelligence. year: 2005 ident: 2025112503262512500_ref027 – volume: 12 issue: (5) year: 2005 ident: 2025112503262512500_ref029 article-title: Comparison of three back-propagation training algorithms for two case studies publication-title: Indian Journal of Engineering and Materials Sciences – volume: 41 start-page: 886 issue: (6) year: 2010 ident: 2025112503262512500_ref051 article-title: Prediction of California bearing ratio (CBR) of fine grained soils by AI methods publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2010.01.003 – volume: 2167 start-page: 61 issue: (1) year: 2010 ident: 2025112503262512500_ref036 article-title: Quantifying effects of particle shape and type and amount of fines on unbound aggregate performance through controlled gradation publication-title: Transportation Research Record: Journal of the Transportation Research Board doi: 10.3141/2167-07 – volume: 44 start-page: 8691 issue: 10 year: 2019 ident: 2025112503262512500_ref2 article-title: Regression and neural network models for California bearing ratio prediction of typical granular materials in Egypt publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-019-04046-8 – volume: 27 start-page: 58 issue: (1) year: 2020 ident: 2025112503262512500_ref001 article-title: An estimated correlation between California bearing ratio (CBR) with some soil parameters of gypseous silty sandy soils publication-title: Tikrit Journal of Engineering Sciences doi: 10.25130/tjes.27.1.08 – volume: 2021 start-page: 1 issue: (1) year: 2021 ident: 2025112503262512500_ref040 article-title: Application of gene expression programming to evaluate strength characteristics of hydrated lime activated rice husk ash-treated expansive soil publication-title: Applied Computational Intelligence and Soft Computing doi: 10.1155/2021/6686347 – volume: 22 issue: (2) year: 2017 ident: 2025112503262512500_ref047 article-title: Prediction of CBR value from index properties of different soils publication-title: Technical Journal of University of Engineering & Technology Taxila – volume: 63 start-page: 47 issue: (2) year: 2021 ident: 2025112503262512500_ref023 article-title: Prediction of California bearing ratio and compaction characteristics of transvaal soils from indicator properties publication-title: Journal of the South African Institution of Civil Engineering doi: 10.17159/2309-8775/2021/v63n2a6 – volume: 46 start-page: 10113 issue: 10 year: 2021 ident: 2025112503262512500_ref1 article-title: Application of data-driven machine learning approach for the estimation of California bearing ratio of the subgrade soils publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-021-05809-y – volume: 72 issue: (6) year: 2020 ident: 2025112503262512500_ref039 article-title: Polynomial relationship of compaction properties of silicate-based RHA modified expansive soil for pavement subgrade purposes publication-title: Építőanyag: Journal of Silicate Based & Composite Materials – volume: 21 start-page: 1183 issue: (5) year: 2020 ident: 2025112503262512500_ref053 article-title: Application of genetic expression programming and artificial neural network for prediction of CBR publication-title: Road Materials and Pavement Design doi: 10.1080/14680629.2018.1544924 – volume: 145 start-page: 778 issue: (6) year: 2016 ident: 2025112503262512500_ref033 article-title: Using machine learning to predict laboratory test results publication-title: American Journal of Clinical Pathology doi: 10.1093/ajcp/aqw064 – volume: 291 start-page: 106239 year: 2021 ident: 2025112503262512500_ref016 article-title: Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions publication-title: Engineering Geology doi: 10.1016/j.enggeo.2021.106239 – volume: 15 start-page: 2907 issue: (12) year: 2018 ident: 2025112503262512500_ref030 article-title: Correlation analysis to identify the effective data in machine learning: prediction of depressive disorder and emotion states publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph15122907 |
| SSID | ssj0001921177 |
| Score | 2.310308 |
| Snippet | The California bearing ratio (CBR) value is a fundamental property used to characterise the strength of the subgrade in road pavement design. CBR calculation... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 186 |
| Title | Using machine learning paradigm to predict CBR value of treated expansive soil |
| Volume | 12 |
| WOSCitedRecordID | wos001568495600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2052-6156 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001921177 issn: 2052-6156 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAXB databaseName: ICE Virtual Library Journals customDbUrl: eissn: 2052-6156 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001921177 issn: 2052-6156 databaseCode: RTT dateStart: 20140103 isFulltext: true titleUrlDefault: http://www.icevirtuallibrary.com/search/advanced providerName: ICE Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2052-6156 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001921177 issn: 2052-6156 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUWyoFL1apFQCnyoVIPq7RZx06cY0HQqi0rhEDiFnkde3cRSVYhoBWH_oP-544_EgLdAz30EkVWPIo9T-OZ8fgZoQ-KUUCCFoEkkQ6oEHnAVaKDXEUxEzJXqbI8sz-T8ZhfXqang8Hv9izM3XVSlny5TBf_VdXQBso2R2f_Qd2dUGiAd1A6PEHt8HyW4l0RQGGLJFV7K8R0aDi-8_m0MM7mojbbM83w8OBsaNi-XaWAcR_B_VRLMBC2qP2m8vUX3nn9qipH-SrtbQC9PJhBzKxwaLkoxLyr-P1u8ifWDtX6AYfQKhyJtijuu3Xhx8wlY09uZ6IAYcOD-bUfrE9LEGbO57lT_s56kZARiEuZ57le0daaX9KDGe3Z0lHLke0sq8t5_GXxY1sieTVVtfpEDBN6GK-g1n6y5HWFiCYEAgmZ7Z8Rmtn-a-gFSVhqjOTJr17KLiVmi9tcV9gOxNOAgojPj3-h5-b0_JXzV-ilDzTwFweQ12igyjdobMGBPThwCw7cggM3FfbgwAAObMGBK409OHAHDmzA8RZdHB-dH34L_I0agYSwuAmkTnSSagi5o0kSaR5KScy-Ls8Vy-lISCHBoxQTGI_icTgZRWDfeaglz-NYMR5tofWyKtU2wgwC7QlNR5pSBl0YJ7mIQKzQNI4SwnfQx3YCsoUjTslWz_bus798hzYfoLaH1pv6Vr1HG_Kumd_U-zadsm9V9geXAmdL |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+paradigm+to+predict+CBR+value+of+treated+expansive+soil&rft.jtitle=Geotechnical+research&rft.au=Ahmad%2C+Umair&rft.au=Jamil%2C+Irfan&rft.au=Jamal%2C+Hamza&rft.au=Khan%2C+Muhammad+Bilal&rft.date=2025-11-27&rft.issn=2052-6156&rft.eissn=2052-6156&rft.volume=12&rft.issue=4&rft.spage=186&rft.epage=201&rft_id=info:doi/10.1680%2Fjgere.24.00066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1680_jgere_24_00066 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-6156&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-6156&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-6156&client=summon |