Using machine learning paradigm to predict CBR value of treated expansive soil

The California bearing ratio (CBR) value is a fundamental property used to characterise the strength of the subgrade in road pavement design. CBR calculation in the laboratory is complex, time-consuming, costly, and requires careful execution. A machine learning approach is used to predict CBR of so...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geotechnical research Ročník 12; číslo 4; s. 186 - 201
Hlavní autoři: Ahmad, Umair, Jamil, Irfan, Jamal, Hamza, Khan, Muhammad Bilal, Accouche, Oussama, Azab, Marc
Médium: Journal Article
Jazyk:angličtina
Vydáno: 27.11.2025
ISSN:2052-6156, 2052-6156
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The California bearing ratio (CBR) value is a fundamental property used to characterise the strength of the subgrade in road pavement design. CBR calculation in the laboratory is complex, time-consuming, costly, and requires careful execution. A machine learning approach is used to predict CBR of soil treated with hydrated-lime activated rice husk ash (HARHA). The prediction uses an algorithmic approach on A-7-6 expansive soil treated with HARHA, added from 0.1% to 12% in 0.1% increments. Using this approach, 121 distinct data sets were produced in the laboratory which are used to accomplish the stated goals. The data set includes six input parameters: HARHA, liquid-limit, plastic-limit, optimum moisture content, clayey activity, maximum dry density and one output: CBR value. Various models were used, including artificial neural networks (ANN), support vector machine (SVM), Gaussian process regression (GPR), and random forest (RF). The models’ performance was evaluated using statistical measures including coefficient of determination, mean absolute error, root mean square error, relative absolute error, and root relative squared error. The evaluation indicates that the RF model had superior predictive performance followed by ANN, SVM, and GPR model. Moreover, sensitivity analysis shows that maximum dry density is the most influential factor on CBR value.
AbstractList The California bearing ratio (CBR) value is a fundamental property used to characterise the strength of the subgrade in road pavement design. CBR calculation in the laboratory is complex, time-consuming, costly, and requires careful execution. A machine learning approach is used to predict CBR of soil treated with hydrated-lime activated rice husk ash (HARHA). The prediction uses an algorithmic approach on A-7-6 expansive soil treated with HARHA, added from 0.1% to 12% in 0.1% increments. Using this approach, 121 distinct data sets were produced in the laboratory which are used to accomplish the stated goals. The data set includes six input parameters: HARHA, liquid-limit, plastic-limit, optimum moisture content, clayey activity, maximum dry density and one output: CBR value. Various models were used, including artificial neural networks (ANN), support vector machine (SVM), Gaussian process regression (GPR), and random forest (RF). The models’ performance was evaluated using statistical measures including coefficient of determination, mean absolute error, root mean square error, relative absolute error, and root relative squared error. The evaluation indicates that the RF model had superior predictive performance followed by ANN, SVM, and GPR model. Moreover, sensitivity analysis shows that maximum dry density is the most influential factor on CBR value.
Author Azab, Marc
Jamil, Irfan
Jamal, Hamza
Khan, Muhammad Bilal
Accouche, Oussama
Ahmad, Umair
Author_xml – sequence: 1
  givenname: Umair
  surname: Ahmad
  fullname: Ahmad, Umair
– sequence: 2
  givenname: Irfan
  surname: Jamil
  fullname: Jamil, Irfan
– sequence: 3
  givenname: Hamza
  surname: Jamal
  fullname: Jamal, Hamza
– sequence: 4
  givenname: Muhammad Bilal
  surname: Khan
  fullname: Khan, Muhammad Bilal
– sequence: 5
  givenname: Oussama
  surname: Accouche
  fullname: Accouche, Oussama
– sequence: 6
  givenname: Marc
  surname: Azab
  fullname: Azab, Marc
BookMark eNpNkEtLAzEcxINUsNZePecL7Jpks3kcdfEFRUHseckm_6wp-yJZi3572-rB0wzDMDC_S7QYxgEQuqYkp0KRm10LEXLGc0KIEGdoyUjJMkFLsfjnL9A6pd2hQjWjVMoletmmMLS4N_YjDIA7MHE4BpOJxoW2x_OIpwgu2BlXd294b7pPwKPHcwQzg8PwNZkhhT3gNIbuCp170yVY_-kKbR_u36unbPP6-FzdbjJLBZ8z66WX2jOui0YWXhFrmZZaKwel49RYYyUvTHN4BkqQhhZcKUW8VU4IKFWxQvnvro1jShF8PcXQm_hdU1IfgdQnIDXj9QlI8QN19VZY
Cites_doi 10.3390/app9204226
10.1023/A:1010933404324
10.1007/BF01045717
10.1016/j.procs.2020.03.336
10.48550/arXiv.2003.05689
10.1088/1757-899X/671/1/012106
10.1007/s12517-022-10468-w
10.1007/s10706-018-0548-1
10.3390/app12042126
10.1109/RTEICT42901.2018.9012507
10.1016/j.eswa.2010.12.054
10.1016/j.compgeo.2007.06.004
10.1007/s12594-020-1409-0
10.5194/nhess-5-853-2005
10.1016/j.asoc.2021.107595
10.1016/S0167-7012(00)00201-3
10.1080/15715124.2019.1680557
10.9790/1684-11512630
10.1007/s12205-014-0137-7
10.48550/arXiv.1811.12808
10.3390/app112110317
10.3390/ijgi7070268
10.3390/ma14216516
10.1007/s42947-020-0249-z
10.1016/j.apenergy.2008.12.020
10.1186/s40703-019-0102-x
10.1007/s00521-015-1943-7
10.1016/S0164-1212(00)00005-4
10.3390/app11136167
10.3390/s22228699
10.1016/j.advengsoft.2010.01.003
10.3141/2167-07
10.1007/s13369-019-04046-8
10.25130/tjes.27.1.08
10.1155/2021/6686347
10.17159/2309-8775/2021/v63n2a6
10.1007/s13369-021-05809-y
10.1080/14680629.2018.1544924
10.1093/ajcp/aqw064
10.1016/j.enggeo.2021.106239
10.3390/ijerph15122907
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1680/jgere.24.00066
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2052-6156
EndPage 201
ExternalDocumentID 10_1680_jgere_24_00066
GroupedDBID 5VS
AADDD
AAYXX
ADBBV
ADDPR
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
EBS
GEI
GROUPED_DOAJ
M~E
OK1
RTT
ID FETCH-LOGICAL-c164t-cf7f79f2493b73f80cc297998de5d41acac743ab680e860b1348880fc8d66e583
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001568495600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2052-6156
IngestDate Thu Nov 27 00:25:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licences/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c164t-cf7f79f2493b73f80cc297998de5d41acac743ab680e860b1348880fc8d66e583
OpenAccessLink https://www.emerald.com/jgere/article-pdf/doi/10.1680/jgere.24.00066/10277163/jgere.24.00066en.pdf
PageCount 16
ParticipantIDs crossref_primary_10_1680_jgere_24_00066
PublicationCentury 2000
PublicationDate 2025-11-27
PublicationDateYYYYMMDD 2025-11-27
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-27
  day: 27
PublicationDecade 2020
PublicationTitle Geotechnical research
PublicationYear 2025
References Ferentinou (2025112503262512500_ref021) 2007; 34
Merghadi (2025112503262512500_ref035) 2018; 7
Rafizul (2025112503262512500_ref045) 2020; 11
Luo (2025112503262512500_ref033) 2016; 145
Chen (2025112503262512500_ref019) 2004; 5
Amershi (2025112503262512500_ref008) 2015
Bresfelean (2025112503262512500_ref012) 2007
Paige-Green (2025112503262512500_ref041) 2009; 2
Talukdar (2025112503262512500_ref052) 2014; 4
González Farias (2025112503262512500_ref022) 2018; 36
Kurt (2025112503262512500_ref031) 2009; 86
Kişi (2025112503262512500_ref029) 2005; 12
Tenpe (2025112503262512500_ref053) 2020; 21
Yildirim (2025112503262512500_ref058) 2011; 38
Bardhan (2025112503262512500_ref017) 2021; 110
Islam (2025112503262512500_ref025) 2020
Kecman (2025112503262512500_ref027) 2005
Yu (2025112503262512500_ref059) 2020
Ali (2025112503262512500_ref007) 2022; 22
Sabat (2025112503262512500_ref048) 2015; 20
Mishra (2025112503262512500_ref036) 2010; 2167
Raza (2025112503262512500_ref1) 2021; 46
Abdulnabi (2025112503262512500_ref001) 2020; 27
Brenning (2025112503262512500_ref011) 2005; 5
Onyelowe (2025112503262512500_ref038) 2019
Ahmad (2025112503262512500_ref002) 2021; 11
Shirur (2025112503262512500_ref049) 2014; 11
Bhatt (2025112503262512500_ref018) 2014; 8
Mair (2025112503262512500_ref034) 2000; 53
Peshkin (2025112503262512500_ref042) 2004
Al-Busultan (2025112503262512500_ref006) 2020; 671
Amjad (2025112503262512500_ref009) 2022; 12
Breiman (2025112503262512500_ref010) 2001; 45
Yang (2025112503262512500_ref057) 1997; 30
Onyelowe (2025112503262512500_ref039) 2020; 72
Bannach-Brown (2025112503262512500_ref015) 2019; 8
Kumar (2025112503262512500_ref030) 2018; 15
Thives (2025112503262512500_ref054) 2022; 15
Kumar (2025112503262512500_ref032) 2013; 2
Raschka (2025112503262512500_ref044) 2018
Bardhan (2025112503262512500_ref016) 2021; 291
Ikechukwu (2025112503262512500_ref024) 2020; 13
Smithson (2025112503262512500_ref050) 2016
Taskiran (2025112503262512500_ref051) 2010; 41
Ahmad (2025112503262512500_ref004) 2019; 9
Kuttah (2025112503262512500_ref028) 2019; 10
Ahmad (2025112503262512500_ref003) 2021; 11
Botchkarev (2025112503262512500_ref013) 2018
Mousavi (2025112503262512500_ref037) 2014; 18
Trong (2025112503262512500_ref056) 2021; 14
Jogin (2025112503262512500_ref026) 2018
Haupt (2025112503262512500_ref023) 2021; 63
Basheer (2025112503262512500_ref014) 2000; 43
Erzin (2025112503262512500_ref020) 2016; 27
Alam (2025112503262512500_ref005) 2020; 95
Onyelowe (2025112503262512500_ref040) 2021; 2021
Rehman (2025112503262512500_ref047) 2017; 22
2025112503262512500_ref043
Roy (2025112503262512500_ref046) 2020; 18
Taha (2025112503262512500_ref2) 2019; 44
Tigga (2025112503262512500_ref055) 2020; 167
References_xml – volume: 9
  start-page: 4226
  issue: (20)
  year: 2019
  ident: 2025112503262512500_ref004
  article-title: Evaluating seismic soil liquefaction potential using Bayesian belief network and C4.5 decision tree approaches
  publication-title: Applied Sciences
  doi: 10.3390/app9204226
– volume: 45
  start-page: 5
  issue: (1)
  year: 2001
  ident: 2025112503262512500_ref010
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 30
  start-page: 207
  issue: (4)
  year: 1997
  ident: 2025112503262512500_ref057
  article-title: A hierarchical analysis for rock engineering using artificial neural networks
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/BF01045717
– volume: 167
  start-page: 706
  year: 2020
  ident: 2025112503262512500_ref055
  article-title: Prediction of type 2 diabetes using machine learning classification methods
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2020.03.336
– year: 2020
  ident: 2025112503262512500_ref059
  article-title: Hyper-parameter optimization: a review of algorithms and applications
  publication-title: Computer Science Machine Learning
  doi: 10.48550/arXiv.2003.05689
– year: 2018
  ident: 2025112503262512500_ref013
  article-title: Performance metrics (error measures) in machine learning regression, forecasting and prognostics: properties and typology
  publication-title: arXiv Preprint
– volume: 671
  start-page: 012106
  issue: (1)
  year: 2020
  ident: 2025112503262512500_ref006
  article-title: Application of artificial neural networks in predicting subbase CBR values using soil indices data. In
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/671/1/012106
– volume: 15
  start-page: 1224
  issue: (13)
  year: 2022
  ident: 2025112503262512500_ref054
  article-title: Methodology of layers’ compaction control through dynamic cone penetrometer (DCP)
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-022-10468-w
– volume: 36
  start-page: 3485
  issue: (6)
  year: 2018
  ident: 2025112503262512500_ref022
  article-title: Prediction of California bearing ratio from index properties of soils using parametric and non-parametric models
  publication-title: Geotechnical and Geological Engineering
  doi: 10.1007/s10706-018-0548-1
– volume: 12
  start-page: 2126
  issue: (4)
  year: 2022
  ident: 2025112503262512500_ref009
  article-title: Prediction of pile bearing capacity using XGBoost algorithm: modeling and performance evaluation
  publication-title: Applied Sciences
  doi: 10.3390/app12042126
– start-page: 2319
  volume-title: 2018 3rd IEEE international conference on recent trends in electronics, information & communication technology (RTEICT)
  year: 2018
  ident: 2025112503262512500_ref026
  article-title: Feature extraction using convolution neural networks (CNN) and deep learning
  doi: 10.1109/RTEICT42901.2018.9012507
– volume: 38
  start-page: 6381
  issue: (5)
  year: 2011
  ident: 2025112503262512500_ref058
  article-title: Estimation of California bearing ratio by using soft computing systems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.12.054
– volume: 34
  start-page: 362
  issue: (5)
  year: 2007
  ident: 2025112503262512500_ref021
  article-title: Computational intelligence tools for the prediction of slope performance
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2007.06.004
– volume: 95
  start-page: 190
  issue: (2)
  year: 2020
  ident: 2025112503262512500_ref005
  article-title: Prediction of CBR value of fine grained soils of Bengal Basin by genetic expression programming, artificial neural network and Krigging method
  publication-title: Journal of the Geological Society of India
  doi: 10.1007/s12594-020-1409-0
– volume: 5
  start-page: 853
  issue: (6)
  year: 2005
  ident: 2025112503262512500_ref011
  article-title: Spatial prediction models for landslide hazards: review, comparison and evaluation
  publication-title: Natural Hazards and Earth System Sciences
  doi: 10.5194/nhess-5-853-2005
– volume: 110
  start-page: 107595
  year: 2021
  ident: 2025112503262512500_ref017
  article-title: ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107595
– start-page: 28
  volume-title: Journal of Civil Engineering
  year: 2020
  ident: 2025112503262512500_ref025
– volume: 43
  start-page: 3
  issue: (1)
  year: 2000
  ident: 2025112503262512500_ref014
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: Journal of Microbiological Methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 18
  start-page: 49
  issue: (1)
  year: 2020
  ident: 2025112503262512500_ref046
  article-title: An empirical-based rainfall-runoff modelling using optimization technique
  publication-title: International Journal of River Basin Management
  doi: 10.1080/15715124.2019.1680557
– volume: 11
  start-page: 26
  issue: (5)
  year: 2014
  ident: 2025112503262512500_ref049
  article-title: Establishing relationship between CBR value and physical properties of soil
  publication-title: IOSR Journal of Mechanical and Civil Engineering
  doi: 10.9790/1684-11512630
– start-page: 1
  year: 2016
  ident: 2025112503262512500_ref050
  article-title: Neural networks designing neural networks: multi-objective hyper-parameter optimization
– volume: 18
  start-page: 2064
  issue: (7)
  year: 2014
  ident: 2025112503262512500_ref037
  article-title: Effect of polymer stabilizer on swelling potential and CBR of forest road material
  publication-title: KSCE Journal of Civil Engineering
  doi: 10.1007/s12205-014-0137-7
– volume-title: Optimal Timing of Pavement Preventive Maintenance Treatment Applications.
  year: 2004
  ident: 2025112503262512500_ref042
– start-page: 51
  year: 2007
  ident: 2025112503262512500_ref012
  article-title: Analysis and predictions on students' behavior using decision trees in Weka environment
– year: 2018
  ident: 2025112503262512500_ref044
  article-title: Model evaluation, model selection, and algorithm selection in machine learning
  publication-title: Computer Science Machine Learning
  doi: 10.48550/arXiv.1811.12808
– volume: 4
  start-page: 559
  issue: (1)
  year: 2014
  ident: 2025112503262512500_ref052
  article-title: A study of correlation between California bearing ratio (CBR) value with other properties of soil
  publication-title: International Journal of Emerging Technology and Advanced Engineering
– volume: 11
  start-page: 10317
  issue: (21)
  year: 2021
  ident: 2025112503262512500_ref002
  article-title: Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: a Gaussian process regression approach
  publication-title: Applied Sciences
  doi: 10.3390/app112110317
– start-page: 58
  volume-title: Oxides of carbon entrapment for environmental friendly geomaterials ash derivation
  year: 2019
  ident: 2025112503262512500_ref038
– volume: 7
  start-page: 268
  issue: (7)
  year: 2018
  ident: 2025112503262512500_ref035
  article-title: Landslide susceptibility assessment at Mila Basin (Algeria): a comparative assessment of prediction capability of advanced machine learning methods
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi7070268
– start-page: 337
  year: 2015
  ident: 2025112503262512500_ref008
  article-title: Modeltracker: Redesigning performance analysis tools for machine learning
– volume: 8
  start-page: 12
  issue: (1)
  year: 2019
  ident: 2025112503262512500_ref015
  article-title: Machine learning algorithms for systematic review: reducing workload in a preclinical review of animal studies and reducing human screening error
  publication-title: Systematic Reviews
– volume: 14
  start-page: 6516
  issue: (21)
  year: 2021
  ident: 2025112503262512500_ref056
  article-title: On random subspace optimization-based hybrid computing models predicting the California bearing ratio of soils
  publication-title: Materials (Basel, Switzerland)
  doi: 10.3390/ma14216516
– volume: 20
  start-page: 981
  issue: (3)
  year: 2015
  ident: 2025112503262512500_ref048
  article-title: Prediction of California bearing ratio of a stabilized expansive soil using artificial neural network and support vector machine
  publication-title: Electron. J. Geotech. Eng
– volume: 13
  start-page: 466
  issue: (5)
  year: 2020
  ident: 2025112503262512500_ref024
  article-title: Performance assessment of pavement structure using dynamics cone penetrometer (DCP)
  publication-title: International Journal of Pavement Research and Technology
  doi: 10.1007/s42947-020-0249-z
– volume: 5
  start-page: 1143
  year: 2004
  ident: 2025112503262512500_ref019
  article-title: Support vector machine soft margin classifiers: error analysis
  publication-title: Journal of Machine Learning Research
– volume: 86
  start-page: 2244
  issue: (10)
  year: 2009
  ident: 2025112503262512500_ref031
  article-title: Prediction of thermal conductivity of ethylene glycol–water solutions by using artificial neural networks
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2008.12.020
– volume: 11
  issue: (1)
  year: 2020
  ident: 2025112503262512500_ref045
  article-title: Prediction of California bearing ratio of fine-grained soil stabilized with admixtures using soft computing systems
  publication-title: Journal of Civil Engineering
– volume: 10
  start-page: 7
  issue: (1)
  year: 2019
  ident: 2025112503262512500_ref028
  article-title: Strong correlation between the laboratory dynamic CBR and the compaction characteristics of sandy soil
  publication-title: International Journal of Geo-Engineering
  doi: 10.1186/s40703-019-0102-x
– volume: 2
  year: 2009
  ident: 2025112503262512500_ref041
  article-title: Use and interpretation of the dynamic cone penetrometer (DCP) test
  publication-title: CSIR Built Environment Pretoria
– volume: 27
  start-page: 1415
  issue: (5)
  year: 2016
  ident: 2025112503262512500_ref020
  article-title: Use of neural networks for the prediction of the CBR value of some Aegean sands
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1943-7
– volume: 53
  start-page: 23
  issue: (1)
  year: 2000
  ident: 2025112503262512500_ref034
  article-title: An investigation of machine learning based prediction systems
  publication-title: Journal of Systems and Software
  doi: 10.1016/S0164-1212(00)00005-4
– volume: 2
  start-page: 3019
  issue: (6)
  year: 2013
  ident: 2025112503262512500_ref032
  article-title: Application of machine learning techniques to predict soaked CBR of remolded soils
  publication-title: International Journal of Engineering Research & Technology (IJERT)
– volume: 11
  start-page: 6167
  issue: (13)
  year: 2021
  ident: 2025112503262512500_ref003
  article-title: Development of prediction models for shear strength of rockfill material using machine learning techniques
  publication-title: Applied Sciences
  doi: 10.3390/app11136167
– volume: 22
  start-page: 8699
  issue: (22)
  year: 2022
  ident: 2025112503262512500_ref007
  article-title: A machine learning architecture replacing heavy instrumented laboratory tests: in application to the pullout capacity of geosynthetic reinforced soils
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s22228699
– ident: 2025112503262512500_ref043
– volume: 8
  start-page: 156
  issue: (2)
  year: 2014
  ident: 2025112503262512500_ref018
  article-title: Prediction of California bearing ratio of soils using artificial neural network
  publication-title: Am. Int. J. Res. Sci. Technol. Eng. Math
– start-page: 49
  volume-title: Real World Applications of Computational Intelligence.
  year: 2005
  ident: 2025112503262512500_ref027
– volume: 12
  issue: (5)
  year: 2005
  ident: 2025112503262512500_ref029
  article-title: Comparison of three back-propagation training algorithms for two case studies
  publication-title: Indian Journal of Engineering and Materials Sciences
– volume: 41
  start-page: 886
  issue: (6)
  year: 2010
  ident: 2025112503262512500_ref051
  article-title: Prediction of California bearing ratio (CBR) of fine grained soils by AI methods
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2010.01.003
– volume: 2167
  start-page: 61
  issue: (1)
  year: 2010
  ident: 2025112503262512500_ref036
  article-title: Quantifying effects of particle shape and type and amount of fines on unbound aggregate performance through controlled gradation
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.3141/2167-07
– volume: 44
  start-page: 8691
  issue: 10
  year: 2019
  ident: 2025112503262512500_ref2
  article-title: Regression and neural network models for California bearing ratio prediction of typical granular materials in Egypt
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-019-04046-8
– volume: 27
  start-page: 58
  issue: (1)
  year: 2020
  ident: 2025112503262512500_ref001
  article-title: An estimated correlation between California bearing ratio (CBR) with some soil parameters of gypseous silty sandy soils
  publication-title: Tikrit Journal of Engineering Sciences
  doi: 10.25130/tjes.27.1.08
– volume: 2021
  start-page: 1
  issue: (1)
  year: 2021
  ident: 2025112503262512500_ref040
  article-title: Application of gene expression programming to evaluate strength characteristics of hydrated lime activated rice husk ash-treated expansive soil
  publication-title: Applied Computational Intelligence and Soft Computing
  doi: 10.1155/2021/6686347
– volume: 22
  issue: (2)
  year: 2017
  ident: 2025112503262512500_ref047
  article-title: Prediction of CBR value from index properties of different soils
  publication-title: Technical Journal of University of Engineering & Technology Taxila
– volume: 63
  start-page: 47
  issue: (2)
  year: 2021
  ident: 2025112503262512500_ref023
  article-title: Prediction of California bearing ratio and compaction characteristics of transvaal soils from indicator properties
  publication-title: Journal of the South African Institution of Civil Engineering
  doi: 10.17159/2309-8775/2021/v63n2a6
– volume: 46
  start-page: 10113
  issue: 10
  year: 2021
  ident: 2025112503262512500_ref1
  article-title: Application of data-driven machine learning approach for the estimation of California bearing ratio of the subgrade soils
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-021-05809-y
– volume: 72
  issue: (6)
  year: 2020
  ident: 2025112503262512500_ref039
  article-title: Polynomial relationship of compaction properties of silicate-based RHA modified expansive soil for pavement subgrade purposes
  publication-title: Építőanyag: Journal of Silicate Based & Composite Materials
– volume: 21
  start-page: 1183
  issue: (5)
  year: 2020
  ident: 2025112503262512500_ref053
  article-title: Application of genetic expression programming and artificial neural network for prediction of CBR
  publication-title: Road Materials and Pavement Design
  doi: 10.1080/14680629.2018.1544924
– volume: 145
  start-page: 778
  issue: (6)
  year: 2016
  ident: 2025112503262512500_ref033
  article-title: Using machine learning to predict laboratory test results
  publication-title: American Journal of Clinical Pathology
  doi: 10.1093/ajcp/aqw064
– volume: 291
  start-page: 106239
  year: 2021
  ident: 2025112503262512500_ref016
  article-title: Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2021.106239
– volume: 15
  start-page: 2907
  issue: (12)
  year: 2018
  ident: 2025112503262512500_ref030
  article-title: Correlation analysis to identify the effective data in machine learning: prediction of depressive disorder and emotion states
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph15122907
SSID ssj0001921177
Score 2.310308
Snippet The California bearing ratio (CBR) value is a fundamental property used to characterise the strength of the subgrade in road pavement design. CBR calculation...
SourceID crossref
SourceType Index Database
StartPage 186
Title Using machine learning paradigm to predict CBR value of treated expansive soil
Volume 12
WOSCitedRecordID wos001568495600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2052-6156
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001921177
  issn: 2052-6156
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAXB
  databaseName: ICE Virtual Library Journals
  customDbUrl:
  eissn: 2052-6156
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001921177
  issn: 2052-6156
  databaseCode: RTT
  dateStart: 20140103
  isFulltext: true
  titleUrlDefault: http://www.icevirtuallibrary.com/search/advanced
  providerName: ICE Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2052-6156
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001921177
  issn: 2052-6156
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUWyoFL1apFQCnyoVIPq7RZx06cY0HQqi0rhEDiFnkde3cRSVYhoBWH_oP-544_EgLdAz30EkVWPIo9T-OZ8fgZoQ-KUUCCFoEkkQ6oEHnAVaKDXEUxEzJXqbI8sz-T8ZhfXqang8Hv9izM3XVSlny5TBf_VdXQBso2R2f_Qd2dUGiAd1A6PEHt8HyW4l0RQGGLJFV7K8R0aDi-8_m0MM7mojbbM83w8OBsaNi-XaWAcR_B_VRLMBC2qP2m8vUX3nn9qipH-SrtbQC9PJhBzKxwaLkoxLyr-P1u8ifWDtX6AYfQKhyJtijuu3Xhx8wlY09uZ6IAYcOD-bUfrE9LEGbO57lT_s56kZARiEuZ57le0daaX9KDGe3Z0lHLke0sq8t5_GXxY1sieTVVtfpEDBN6GK-g1n6y5HWFiCYEAgmZ7Z8Rmtn-a-gFSVhqjOTJr17KLiVmi9tcV9gOxNOAgojPj3-h5-b0_JXzV-ilDzTwFweQ12igyjdobMGBPThwCw7cggM3FfbgwAAObMGBK409OHAHDmzA8RZdHB-dH34L_I0agYSwuAmkTnSSagi5o0kSaR5KScy-Ls8Vy-lISCHBoxQTGI_icTgZRWDfeaglz-NYMR5tofWyKtU2wgwC7QlNR5pSBl0YJ7mIQKzQNI4SwnfQx3YCsoUjTslWz_bus798hzYfoLaH1pv6Vr1HG_Kumd_U-zadsm9V9geXAmdL
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+paradigm+to+predict+CBR+value+of+treated+expansive+soil&rft.jtitle=Geotechnical+research&rft.au=Ahmad%2C+Umair&rft.au=Jamil%2C+Irfan&rft.au=Jamal%2C+Hamza&rft.au=Khan%2C+Muhammad+Bilal&rft.date=2025-11-27&rft.issn=2052-6156&rft.eissn=2052-6156&rft.volume=12&rft.issue=4&rft.spage=186&rft.epage=201&rft_id=info:doi/10.1680%2Fjgere.24.00066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1680_jgere_24_00066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-6156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-6156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-6156&client=summon