The problem of finding eigenvalues and eigenfunctions of boundary value problems for mixed-type equations

In this work, eigenvalues and eigenfunctions of the boundary value problem with the Frankl condition for an elliptic-hyperbolic type equation in a special domain are considered. In the elliptic part of the domain, using polar coordinates and the method of separation of variables, we derive the spect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika H. 93; S. 58 - 66
1. Verfasser: Tojiboev, Ibrokhimjon Tojalievich
Format: Journal Article
Sprache:Englisch
Russisch
Veröffentlicht: 01.02.2025
ISSN:1998-8621, 2311-2255
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this work, eigenvalues and eigenfunctions of the boundary value problem with the Frankl condition for an elliptic-hyperbolic type equation in a special domain are considered. In the elliptic part of the domain, using polar coordinates and the method of separation of variables, we derive the spectral problems for the ordinary differential equations. By solving these problems, we obtain the eigenvalues and eigenfunctions of the formulated problem. Furthermore, we prove that the system of eigenfunctions is incomplete in the L 2 space, which means that not every square-integrable function in the domain can be represented as a series expansion in terms of these eigenfunctions. This incompleteness is demonstrated by constructing a specific function orthogonal to the entire system of eigenfunctions. By exploring the spectral properties of mixed-type equations, this paper contributes to a broader understanding of how solutions behave in domains with varying types of differential operators. The study highlights the challenges posed by the change in operator type, emphasizing the difficulties in obtaining a complete and comprehensive eigenfunction system. The research expands on previous works in the field of spectral analysis for mixedtype equations, particularly with respect to the role of spectral parameters and their impact on the completeness of the solution space. This research provides valuable insights into the mathematical and physical implications of mixed-type boundary value problems.
AbstractList In this work, eigenvalues and eigenfunctions of the boundary value problem with the Frankl condition for an elliptic-hyperbolic type equation in a special domain are considered. In the elliptic part of the domain, using polar coordinates and the method of separation of variables, we derive the spectral problems for the ordinary differential equations. By solving these problems, we obtain the eigenvalues and eigenfunctions of the formulated problem. Furthermore, we prove that the system of eigenfunctions is incomplete in the L 2 space, which means that not every square-integrable function in the domain can be represented as a series expansion in terms of these eigenfunctions. This incompleteness is demonstrated by constructing a specific function orthogonal to the entire system of eigenfunctions. By exploring the spectral properties of mixed-type equations, this paper contributes to a broader understanding of how solutions behave in domains with varying types of differential operators. The study highlights the challenges posed by the change in operator type, emphasizing the difficulties in obtaining a complete and comprehensive eigenfunction system. The research expands on previous works in the field of spectral analysis for mixedtype equations, particularly with respect to the role of spectral parameters and their impact on the completeness of the solution space. This research provides valuable insights into the mathematical and physical implications of mixed-type boundary value problems.
Author Tojiboev, Ibrokhimjon Tojalievich
Author_xml – sequence: 1
  givenname: Ibrokhimjon Tojalievich
  surname: Tojiboev
  fullname: Tojiboev, Ibrokhimjon Tojalievich
BookMark eNo1UEtrAyEYlJJC0zTXnv0Dm3zq6uqxhL4g0Et6Xlz9TIVE0zVbmn_f5nUahnkwzD0ZpZyQkEcGM9ZwLubMGK0VZ3Mj5vKGjLlgrOJcyhEZH7XqKN6RaSmxAya1EUo0YxJXX0h3fe42uKU50BCTj2lNMa4x_djNgIXa5M88DMntY07l6OzykLztD_TkunYUGnJPt_EXfbU_7JDi92BPmQdyG-ym4PSCE_L58rxavFXLj9f3xdOyckzV-6qWEJhTqLTv6gAsOGMdYmM6pREZgjdSWyVkozmAwhp8EBrQdQIAsBYTMjv3uj6X0mNod33c_g9tGbSnr9rrV60RrRR_phFgJA
ContentType Journal Article
CorporateAuthor Ferghana State University
CorporateAuthor_xml – name: Ferghana State University
DBID AAYXX
CITATION
DOI 10.17223/19988621/93/5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2311-2255
EndPage 66
ExternalDocumentID 10_17223_19988621_93_5
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ID FETCH-LOGICAL-c164t-450f1c6e68db4f01fc9acee79b68ee1e0d958a635782006e40df380ecb3000e43
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001443980700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1998-8621
IngestDate Sat Nov 29 07:54:09 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 93
Language English
Russian
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c164t-450f1c6e68db4f01fc9acee79b68ee1e0d958a635782006e40df380ecb3000e43
OpenAccessLink https://vital.lib.tsu.ru/vital/access/services/Download/koha:001153054/SOURCE1
PageCount 9
ParticipantIDs crossref_primary_10_17223_19988621_93_5
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika
PublicationYear 2025
SSID ssib015893637
ssib044764469
ssib005105418
Score 2.2814157
Snippet In this work, eigenvalues and eigenfunctions of the boundary value problem with the Frankl condition for an elliptic-hyperbolic type equation in a special...
SourceID crossref
SourceType Index Database
StartPage 58
Title The problem of finding eigenvalues and eigenfunctions of boundary value problems for mixed-type equations
WOSCitedRecordID wos001443980700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2311-2255
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044764469
  issn: 1998-8621
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoELAgGCApUPSByisHnYSXxEqBUHWnFYqt6iOHG2adikbLLVcuF_8G-ZcewkPA7lwCXajLwTJfNpXh7PEPLaL2QUF7FwPS5Ll0lRuJIl3A1U4BdhGXpCV1ucf4zPzpKLC_Fpsfhhz8LcfImbJtnvxfV_FTXQQNh4dPYfxD0yBQL8BqHDFcQO11sL3oyJQU9Qb0o3a0dh201s7a2Grsz6Hq3aWAon9YSl7TdHr7I8dL8GZ1PtVeHqfK36uptl-Yxfew7GpalqZ9Vuurpdt8667XbArOtBmTZI2NkKENVnb53TbOgfXWdO5WxUfZnBv0cLsWqvKtnCi6MCk9u2vqw2VwBToEPYAKbcpN9MtiLgtsB5VLB4pA-iqIGkNA1cTN8FvcJneBPhTKsOzd2NfR6GtPyh-eNAt6BA_sgeCz_wnk92zu7t_2b-xqJEDIeQS2p5pCJM-R1yN4i5QJ1_-v14rso4m8y6z8HviyZPj7EYHE09UHF8Y9MyFB-xtI9YinDJZy7RzLdZPSQPTFBC3w1gekQWqnlMKgASNSCgbUkNkOgMSBSARH8FEq60QKJ6leXRUQASnYBERyA9IZ9PjlfvP7hmMIebQ3Tdu4x7pZ9HKkoKyUrPL3ORgbMVCxklSvnKKwRPMux0mGDGSjGvKMPEU7kMwQIrFj4lB03bqGeERqVgJWcSXIYID9gL3GdOcukXDALf0H9O3thvk14P_VfSvwvq8NYrX5D7EzRfkoN-u1OvyL38pq-67ZGW808LfX1V
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+problem+of+finding+eigenvalues+and+eigenfunctions+of+boundary+value+problems+for+mixed-type+equations&rft.jtitle=Vestnik+Tomskogo+gosudarstvennogo+universiteta.+Matematika+i+mekhanika&rft.au=Tojiboev%2C+Ibrokhimjon+Tojalievich&rft.date=2025-02-01&rft.issn=1998-8621&rft.eissn=2311-2255&rft.issue=93&rft.spage=58&rft.epage=66&rft_id=info:doi/10.17223%2F19988621%2F93%2F5&rft.externalDBID=n%2Fa&rft.externalDocID=10_17223_19988621_93_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-8621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-8621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-8621&client=summon