Medical Defense Nanorobots (MDNRs): a new evaluation and selection of controller criteria for improved disease diagnosis and patient safety using NARMA(L2)-FOP + D(ANFIS)µ – Iλ-based Archimedes Optimization Algorithm
This article addresses the complexity of optimizing movements in Medical Defense Nanorobots (MDNRs) by proposing a novel integration approach. The challenge lies in selecting the Archimedes Optimization Algorithm (AOA) for MDNR movements, considering specific criteria for fractional-order proportion...
Uloženo v:
| Vydáno v: | International journal of information technology (Singapore. Online) Ročník 17; číslo 7; s. 3935 - 3945 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Nature Singapore
01.09.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 2511-2104, 2511-2112 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This article addresses the complexity of optimizing movements in Medical Defense Nanorobots (MDNRs) by proposing a novel integration approach. The challenge lies in selecting the Archimedes Optimization Algorithm (AOA) for MDNR movements, considering specific criteria for fractional-order proportional-integral-derivative (FOPID) controller gains. To overcome this, the study introduces a three-phase approach: MDNR-based NARMA-L2 controller Pre-process and Identification, Enhancement of NARMA-L2 controller-based NARMA(L2)-
F
O
P
+
D
(
A
N
F
I
S
)
μ
-
I
λ
, and Evaluation of FOPID criteria-based AOA. This approach integrates NARMA-L2 for criterion weighting and ANFIS for AOA selection, validated through NARMA(L2)-
F
O
P
+
D
(
A
N
F
I
S
)
μ
-
I
λ
evaluation, showcasing the efficacy of the proposed methodology. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2511-2104 2511-2112 |
| DOI: | 10.1007/s41870-023-01724-7 |