Neural ordinary differential grey algorithm to forecasting MEVW systems
Because of the advantage of the gray theory for forecasting small sample time data, gray algorithm theory has definitely been extensively utilized since it has been proposed and is currently being widely developed for predicting frames particularly in small sample problems. This article presented a...
Saved in:
| Published in: | International journal of computers, communications & control Vol. 19; no. 1 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oradea
Agora University of Oradea
01.02.2024
|
| Subjects: | |
| ISSN: | 1841-9836, 1841-9844 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Because of the advantage of the gray theory for forecasting small sample time data, gray algorithm theory has definitely been extensively utilized since it has been proposed and is currently being widely developed for predicting frames particularly in small sample problems. This article presented a viewpoint called gray algorithm by neuron- based ordinary-differential equation (NODE), called NODGM (neuron-based ordinary-differential gray-mode). In this type, we learn prediction methods through a training process that includes whiting equations. Compared with other models, the structure and time series via the regularity of real-samples are required in advance, so this NODGM design can have a better feasibility of applications and also study the origins of data according to different samples. The purpose is obtaining a better design with high forecast effectiveness, this study uses NODGM to train the model, while Runge-Kutta method is used to have the forecast set and solve numerical framwork. This algorithmic design creates a favorable theoretical basis for the installation of new process and distributes the numerical dimensions of completely mechanically elastic vehicle wheels (MEVW) in practical simulations. |
|---|---|
| AbstractList | Because of the advantage of the gray theory for forecasting small sample time data, gray algorithm theory has definitely been extensively utilized since it has been proposed and is currently being widely developed for predicting frames particularly in small sample problems. This article presented a viewpoint called gray algorithm by neuron- based ordinary-differential equation (NODE), called NODGM (neuron-based ordinary-differential gray-mode). In this type, we learn prediction methods through a training process that includes whiting equations. Compared with other models, the structure and time series via the regularity of real-samples are required in advance, so this NODGM design can have a better feasibility of applications and also study the origins of data according to different samples. The purpose is obtaining a better design with high forecast effectiveness, this study uses NODGM to train the model, while Runge-Kutta method is used to have the forecast set and solve numerical framwork. This algorithmic design creates a favorable theoretical basis for the installation of new process and distributes the numerical dimensions of completely mechanically elastic vehicle wheels (MEVW) in practical simulations. |
| Author | Chen, Timothy Wang, Ruei-Yuan Meng, Yahui Chen, Zy |
| Author_xml | – sequence: 1 givenname: Zy surname: Chen fullname: Chen, Zy – sequence: 2 givenname: Yahui surname: Meng fullname: Meng, Yahui – sequence: 3 givenname: Ruei-Yuan surname: Wang fullname: Wang, Ruei-Yuan – sequence: 4 givenname: Timothy surname: Chen fullname: Chen, Timothy |
| BookMark | eNp9kE1PAjEQhhuDiYj8AU-beN61X9uWoyGIJqgXP45N6U6xZNliWw78excwHjw4l5lM3mcmeS7RoAsdIHRNcEVqxeStX1trK4opq0jFhRRnaEgUJ-VEcT74nZm4QOOU1rgvRhWW9RDNn2EXTVuE2PjOxH3ReOcgQpd9v11F2BemXYXo8-emyKFwIYI1KftuVTzN3j-KtE8ZNukKnTvTJhj_9BF6u5-9Th_Kxcv8cXq3KC0RXJTAcVNzVjusMBjspDKScqOWgrJmiYWsG5CGSkqNw0vMGJPcEQkglFGUWzZCN6e72xi-dpCyXodd7PqXmk4I4wQzxfuUOqVsDClFcNr6bLIPXY7Gt5pgfTSnj-b0wZwm-mCuR-kfdBv9pjfzH_QN2bR0Dw |
| CitedBy_id | crossref_primary_10_1017_S0890060424000325 |
| ContentType | Journal Article |
| Copyright | 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.15837/ijccc.2023.1.4676 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1841-9844 |
| ExternalDocumentID | 10_15837_ijccc_2023_1_4676 |
| GroupedDBID | .4S .DC 29J 2WC 5GY AAKPC AAYXX ACIPV ADBBV AENEX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION E3Z EDO EOJEC GROUPED_DOAJ HCIFZ ITG ITH K7- MK~ ML~ M~E OBODZ OK1 OVT PHGZM PHGZT PIMPY PQGLB TR2 TUS 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c1646-e40d5435f080ea0f78a724a8b623db0675de7a2722af0b033374f17ee68a824c3 |
| IEDL.DBID | P5Z |
| ISSN | 1841-9836 |
| IngestDate | Fri Jul 25 23:47:47 EDT 2025 Sat Nov 29 03:05:06 EST 2025 Tue Nov 18 21:18:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1646-e40d5435f080ea0f78a724a8b623db0675de7a2722af0b033374f17ee68a824c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2913410384?pq-origsite=%requestingapplication% |
| PQID | 2913410384 |
| PQPubID | 5045567 |
| ParticipantIDs | proquest_journals_2913410384 crossref_citationtrail_10_15837_ijccc_2023_1_4676 crossref_primary_10_15837_ijccc_2023_1_4676 |
| PublicationCentury | 2000 |
| PublicationDate | 20240201 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 20240201 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oradea |
| PublicationPlace_xml | – name: Oradea |
| PublicationTitle | International journal of computers, communications & control |
| PublicationYear | 2024 |
| Publisher | Agora University of Oradea |
| Publisher_xml | – name: Agora University of Oradea |
| SSID | ssj0000328075 ssib032305687 |
| Score | 2.2897055 |
| Snippet | Because of the advantage of the gray theory for forecasting small sample time data, gray algorithm theory has definitely been extensively utilized since it has... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Algorithms Differential equations Forecasting Mathematical models Runge-Kutta method Vehicle wheels |
| Title | Neural ordinary differential grey algorithm to forecasting MEVW systems |
| URI | https://www.proquest.com/docview/2913410384 |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1841-9844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000328075 issn: 1841-9836 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1841-9844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000328075 issn: 1841-9836 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1841-9844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000328075 issn: 1841-9836 databaseCode: P5Z dateStart: 20060301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1841-9844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000328075 issn: 1841-9836 databaseCode: K7- dateStart: 20060301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1841-9844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000328075 issn: 1841-9836 databaseCode: BENPR dateStart: 20060301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1841-9844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000328075 issn: 1841-9836 databaseCode: PIMPY dateStart: 20060301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TgMxELW4ChpuxBm5oEOGXXs3dioEKByCRCvE3awc28uhkAAbkGj4dmYcL4iGhsaNvYdm7PEbH-8RsmGM0MqKlFkZG5ak2jHtNK5bpcZGWqrIUwpdnsp2W11fN7Kw4FaGY5VVTPSB2vYNrpFvc9wiRjbvZOf5haFqFO6uBgmNUTKOLAko3ZClt1V_EhzxcYAfPjILHrh3Ia-JWUPhzqW_R5NCnrb98GgMshpysRVvQQCp_56rfodqP_8cTP_3z2fIVECedHfYVWbJiOvNkelK1YGGQT5PDpGvAxpCVurv6tJKQwViQZdCev5BdfcOPjC4f6KDPgXU64wu8fg0bTUvr-iQHLpcIBcHzfP9IxbkFphBkjHmksimgJ4KAJFOR4VUWvJEqw4gJNvBzMI6qbnkXBcRWFcImRSxdK6utOKJEYtkrNfvuSVCwdC2A0AE8JSBNlYr4awRrlHv6MI6s0ziyrC5CVzkKInRzTEnQWfk3hk5OiOPc3TGMtn8fuZ5yMTxZ-u1yhl5GJVl_uOJlb-rV8kkvCsZns5eI2OD1ze3TibM--ChfK2R8b1mOzur-fwdyhPJoGx9Nmu--0F9dtzKbr4AKOjeoQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqFQuPPoQr4IP9FQZEjtZew8IIcpLu6x6oJSb69gOBS27QBYQf4rfyEweIC7cOHCOY8X5xjPf-PENwKpz0movU-5V7HiS2sBtsLRulTofWaWjUlLouKt6PX1y0v49Bg_NXRg6Vtn4xNJR-6GjNfJ1QVvEpOadbF5ecaoaRburTQmNyiw64f4OU7Zi4-AX4vtDiN2do-19XlcV4I60tHhIIp8iSciRKwUb5UpbJRKrMyQCPiMC7YOyQglh8yiLpJQqyWMVQktbLRInsd8PMJFIrWhedRRv7FcK4uM13SkjgRS11i_mUTFva9opLe_tpJgXrp-dO0cqikKuxWvosFovY-PL0FDGu93p9_anZmCqZtZsq5oKszAWBp9huqlawWon9gX2SI8EG-KHlXeRWVMjBn1dn52iaTPbP8UBjf5fsNGQIasPzhZ0PJwd7hz_ZZX4dfEV_rzJcL7B-GA4CHPAEFifIdFCvuiwjbdaBu9kaLcym_vg5iFugDSu1lqnkh99QzkXgW9K8A2Bb2JD4M_Dz6d3LiulkVdbLzXgm9rrFOYZ-YXXH6_Ap_2jw67pHvQ6izCJ_SbVSfQlGB9d34Tv8NHdjs6K6-XSwBn8e2s7eQQ7hzKt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+ordinary+differential+grey+algorithm+to+forecasting+MEVW+systems&rft.jtitle=International+journal+of+computers%2C+communications+%26+control&rft.au=Chen%2C+Zy&rft.au=Meng%2C+Yahui&rft.au=Wang%2C+Ruei-Yuan&rft.au=Chen%2C+Timothy&rft.date=2024-02-01&rft.pub=Agora+University+of+Oradea&rft.issn=1841-9836&rft.eissn=1841-9844&rft.volume=19&rft.issue=1&rft_id=info:doi/10.15837%2Fijccc.2023.1.4676 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1841-9836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1841-9836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1841-9836&client=summon |