Statistically Robust Beamforming Design for Joint Target Detection and Communications
The detection probability of radar, as a widely used sensing metric used by the integrated sensing and communication (ISAC) beamforming design, typically relies on the true sensing parameters, which can hardly be achieved. In this work, we present a statistically robust ISAC beamforming design to co...
Uložené v:
| Vydané v: | IEEE internet of things journal Ročník 12; číslo 23; s. 51701 - 51715 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.12.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The detection probability of radar, as a widely used sensing metric used by the integrated sensing and communication (ISAC) beamforming design, typically relies on the true sensing parameters, which can hardly be achieved. In this work, we present a statistically robust ISAC beamforming design to combat the performance degradation caused by the random sensing parameter estimation errors and the imperfect channel state information (CSI). Specifically, we first maximize the expectation of the radar output signal-to-interference-plus-noise ratio (SINR) over both the angle and the reflection coefficient estimation errors, while guaranteeing the communication users' SINR requirements. To address the challenging stochastic optimization problem, we first derive a tractable deterministic reformulation and then develop an efficient majorization-minimization (MM)-based algorithm, where the solutions to the base station (BS) transmit beamformer and the BS receive beamformer in each MM iteration are obtained via the alternating direction method of multipliers (ADMM) and the generalized Rayleigh quotient in a closed form, respectively. For the single communication user case, a semi-closed-form solution to the transmit beamformer can be achieved in each MM iteration. In addition, we also consider the imperfect CSI by introducing outage SINR constraints. Although the resultant problem is more difficult, we can still obtain a high-quality solution based on the algorithm developed for the previous problem. Simulation results indicate that, given the same communication constraints, the proposed MM-based robust design achieves better target detection performance than the traditional nonrobust designs and can even approach the clairvoyant scheme with known parameters. |
|---|---|
| AbstractList | The detection probability of radar, as a widely used sensing metric used by the integrated sensing and communication (ISAC) beamforming design, typically relies on the true sensing parameters, which can hardly be achieved. In this work, we present a statistically robust ISAC beamforming design to combat the performance degradation caused by the random sensing parameter estimation errors and the imperfect channel state information (CSI). Specifically, we first maximize the expectation of the radar output signal-to-interference-plus-noise ratio (SINR) over both the angle and the reflection coefficient estimation errors, while guaranteeing the communication users' SINR requirements. To address the challenging stochastic optimization problem, we first derive a tractable deterministic reformulation and then develop an efficient majorization-minimization (MM)-based algorithm, where the solutions to the base station (BS) transmit beamformer and the BS receive beamformer in each MM iteration are obtained via the alternating direction method of multipliers (ADMM) and the generalized Rayleigh quotient in a closed form, respectively. For the single communication user case, a semi-closed-form solution to the transmit beamformer can be achieved in each MM iteration. In addition, we also consider the imperfect CSI by introducing outage SINR constraints. Although the resultant problem is more difficult, we can still obtain a high-quality solution based on the algorithm developed for the previous problem. Simulation results indicate that, given the same communication constraints, the proposed MM-based robust design achieves better target detection performance than the traditional nonrobust designs and can even approach the clairvoyant scheme with known parameters. |
| Author | Zhou, Shixian Shen, Hong Liu, Pingchuan Zhao, Chunming Xu, Wei |
| Author_xml | – sequence: 1 givenname: Pingchuan orcidid: 0000-0003-3313-5924 surname: Liu fullname: Liu, Pingchuan email: pingchuan-seu@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China – sequence: 2 givenname: Hong orcidid: 0000-0002-2788-0349 surname: Shen fullname: Shen, Hong email: shhseu@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China – sequence: 3 givenname: Wei orcidid: 0000-0001-9341-8382 surname: Xu fullname: Xu, Wei email: wxu@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China – sequence: 4 givenname: Shixian surname: Zhou fullname: Zhou, Shixian email: zsxian@seu.edu.cn organization: China Mobile Zijin Research Institute, Nanjing, China – sequence: 5 givenname: Chunming orcidid: 0000-0002-2624-7322 surname: Zhao fullname: Zhao, Chunming email: cmzhao@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China |
| BookMark | eNpNUMtqwzAQFCWFpmk-oNCDoGenWsmW7WObvhICgTY5C9mWgkIspZZ8yN9XJoH2tLvDzCwzt2hknVUI3QOZAZDyablYb2aU0GzGOHBKiys0pozmSco5Hf3bb9DU-z0hJMoyKPkYbb-DDMYHU8vD4YS_XNX7gF-UbLXrWmN3-FV5s7M4nnjpjA14I7udChEPqg7GWSxtg-eubXsbXQbE36FrLQ9eTS9zgrbvb5v5Z7Jafyzmz6ukBs5CooEqldUATZbLVLNU5gWrKGRQSZZzImnVNBXXVVbUDUhGGc-bgslK6lLTvGET9Hj2PXbup1c-iL3rOxtfihiZxZS8zCMLzqy6c953SotjZ1rZnQQQMRQohgLFUKC4FBg1D2eNUUr98QGKtCAF-wVLSG7b |
| CODEN | IITJAU |
| Cites_doi | 10.1109/TWC.2023.3250263 10.1109/TSP.2021.3135692 10.1109/JSTSP.2023.3239189 10.1017/CBO9780511804441 10.1109/LCOMM.2021.3140093 10.1109/TVT.2023.3240234 10.1109/TSP.2017.2787115 10.1109/MSP.2010.936019 10.1109/TSP.2014.2354312 10.1109/TCOMM.2023.3286461 10.1109/TSP.2008.919384 10.1109/TVT.2024.3426042 10.1287/mnsc.13.7.492 10.1109/TSP.2020.3004739 10.1109/JSAC.2022.3155529 10.1109/TAES.2008.4655353 10.1109/TCOMM.2019.2912383 10.1137/1.9780898718751 10.1109/JIOT.2024.3430894 10.1109/MNET.010.2100152 10.1109/LWC.2024.3454728 10.1109/LWC.2022.3198683 10.1109/JIOT.2022.3191386 10.1109/JSAC.2024.3460065 10.1109/TSP.2016.2601299 10.1109/ICCT59356.2023.10419580 10.1109/TSP.2006.879267 10.1109/JIOT.2023.3235618 10.1109/GLOBECOM54140.2023.10436717 10.1109/JIOT.2024.3486573 10.1109/TSP.2016.2535378 10.1109/7.135446 10.1109/TRS.2024.3368588 10.1109/JSAC.2022.3156632 10.1109/TAES.2013.6404093 10.1109/JSAC.2023.3287540 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2025.3616228 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 51715 |
| ExternalDocumentID | 10_1109_JIOT_2025_3616228 11184808 |
| Genre | orig-research |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD ABAZT JQ2 L7M L~C L~D M43 |
| ID | FETCH-LOGICAL-c163t-f12ee5c11d57a4f34a783b2151ba3760a2bddb6fb58cd1a32367d83abaf9f27d3 |
| IEDL.DBID | RIE |
| ISSN | 2327-4662 |
| IngestDate | Thu Nov 20 16:52:00 EST 2025 Thu Nov 27 00:53:13 EST 2025 Wed Nov 26 07:22:48 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c163t-f12ee5c11d57a4f34a783b2151ba3760a2bddb6fb58cd1a32367d83abaf9f27d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9341-8382 0000-0002-2788-0349 0000-0002-2624-7322 0000-0003-3313-5924 |
| PQID | 3273110697 |
| PQPubID | 2040421 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_11184808 proquest_journals_3273110697 crossref_primary_10_1109_JIOT_2025_3616228 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Dec.1,-1 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-Dec.1,-1 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Golub (ref30) 1996 ref24 ref23 ref26 ref25 ref20 ref22 Kay (ref28) 1998; 2 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Bertsekas (ref32) 1997 |
| References_xml | – volume: 2 year: 1998 ident: ref28 publication-title: Fundamentals of Statistical Signal Processing: Detection Theory – ident: ref17 doi: 10.1109/TWC.2023.3250263 – ident: ref9 doi: 10.1109/TSP.2021.3135692 – ident: ref1 doi: 10.1109/JSTSP.2023.3239189 – ident: ref39 doi: 10.1017/CBO9780511804441 – ident: ref10 doi: 10.1109/LCOMM.2021.3140093 – ident: ref12 doi: 10.1109/TVT.2023.3240234 – ident: ref38 doi: 10.1109/TSP.2017.2787115 – ident: ref34 doi: 10.1109/MSP.2010.936019 – ident: ref20 doi: 10.1109/TSP.2014.2354312 – ident: ref24 doi: 10.1109/TCOMM.2023.3286461 – ident: ref19 doi: 10.1109/TSP.2008.919384 – ident: ref27 doi: 10.1109/TVT.2024.3426042 – ident: ref33 doi: 10.1287/mnsc.13.7.492 – ident: ref6 doi: 10.1109/TSP.2020.3004739 – ident: ref7 doi: 10.1109/JSAC.2022.3155529 – ident: ref36 doi: 10.1109/TAES.2008.4655353 – ident: ref22 doi: 10.1109/TCOMM.2019.2912383 – ident: ref35 doi: 10.1137/1.9780898718751 – ident: ref13 doi: 10.1109/JIOT.2024.3430894 – ident: ref3 doi: 10.1109/MNET.010.2100152 – ident: ref15 doi: 10.1109/LWC.2024.3454728 – ident: ref23 doi: 10.1109/LWC.2022.3198683 – ident: ref4 doi: 10.1109/JIOT.2022.3191386 – ident: ref25 doi: 10.1109/JSAC.2024.3460065 – ident: ref31 doi: 10.1109/TSP.2016.2601299 – ident: ref26 doi: 10.1109/ICCT59356.2023.10419580 – ident: ref8 doi: 10.1109/TSP.2006.879267 – ident: ref2 doi: 10.1109/JIOT.2023.3235618 – volume-title: Parallel and Distributed Computation: Numerical Methods year: 1997 ident: ref32 – ident: ref16 doi: 10.1109/GLOBECOM54140.2023.10436717 – ident: ref14 doi: 10.1109/JIOT.2024.3486573 – ident: ref21 doi: 10.1109/TSP.2016.2535378 – volume-title: Matrix Computations year: 1996 ident: ref30 – ident: ref29 doi: 10.1109/7.135446 – ident: ref18 doi: 10.1109/TRS.2024.3368588 – ident: ref5 doi: 10.1109/JSAC.2022.3156632 – ident: ref37 doi: 10.1109/TAES.2013.6404093 – ident: ref11 doi: 10.1109/JSAC.2023.3287540 |
| SSID | ssj0001105196 |
| Score | 2.359071 |
| Snippet | The detection probability of radar, as a widely used sensing metric used by the integrated sensing and communication (ISAC) beamforming design, typically... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 51701 |
| SubjectTerms | Algorithms Angle of reflection Array signal processing Beamforming Closed form solutions Clutter Communication Constraints Detection probability Errors Estimation error Exact solutions Integrated sensing and communication integrated sensing and communication (ISAC) majorization–minimization (MM) Object detection Optimization Parameter estimation Performance degradation Radar Radar detection Reflectance Robot sensing systems Robust design robust ISAC beamforming Signal to noise ratio Target detection Vectors |
| Title | Statistically Robust Beamforming Design for Joint Target Detection and Communications |
| URI | https://ieeexplore.ieee.org/document/11184808 https://www.proquest.com/docview/3273110697 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ePBifVSsVtmDJyFtNptkN0efaJEq0kJvYTa7AaEm0qaC_96dTUoV8eAtCckQZjKZb3a_mSHkHCIbJgxwz1cRjjDzuZeE0mYpoZaIj_Os7jP7KEYjOZ0mz02xuquFMcY48pnp46Hby9dltsSlsoH1SysAS3s3hYjrYq31ggpDNBI3O5fMTwbDh6exzQCDqM9jFgc4cP1b7HHDVH79gV1YuWv_84V2yU6DH-llbfA9smGKfdJezWagjasekAmiSNeEGWazT_pSquWiolcG3hCl2nhFbxx3g9pTOixfi4qOHSncXq8cPaugUGj6o4Bk0SGTu9vx9b3XjFDwMgu0Ki9ngTFRxpiOBIQ5D0FIrjDMK0A6DARKYyGeimSmGXDs56YlBwV5kgdC80PSKsrCHBEaRhpyLYBBblM6HkkhpGKKCcgh4Fp1ycVKuel73SkjdRmGn6RoiRQtkTaW6JIOanN9Y6PILumt7JE2zrRIuYVYVkyciOM_Hjsh2yi9ppn0SKuaL80p2co-rKLnZ-47-QLh6b1c |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-igr74LU6n5sEnobNpmqZ99GtMnVOkA9_KpUlBmJ24TvC_N5d2TBEffGtLm4a7Xu93yf3uCDkBYd2EAe75SmALM597SRjbKCXUMeLjIq_rzPblYBA_PyePDVndcWGMMS75zHTw0O3l63E-xaWyM2uXdgCk9i6JMAz8mq41X1JhiEeiZu-S-cnZ7c1DamPAQHR4xKIAW65_8z6uncqvf7BzLN31f05pg6w1CJKe1yrfJAum3CLrs-4MtDHWbTJEHOnKMMNo9Emfxmo6qeiFgVfEqdZj0SuXvUHtKb0dv5QVTV1auL1euQStkkKp6Q8KyWSHDLvX6WXPa5ooeLmFWpVXsMAYkTOmhYSw4CHImCt09AowIQYCpZGKp0ScawYcK7rpmIOCIikCqfkuWSzHpdkjNBQaCi2BQWGDOi5iKWPFFJNQQMC1apHTmXCzt7pWRuZiDD_JUBMZaiJrNNEiOyjN-Y2NIFukPdNH1pjTJOMWZNlhokTu__HYMVnppff9rH8zuDsgq_imOumkTRar96k5JMv5hxX6-5H7Zr4A5CnAow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistically+Robust+Beamforming+Design+for+Joint+Target+Detection+and+Communications&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Liu%2C+Pingchuan&rft.au=Shen%2C+Hong&rft.au=Xu%2C+Wei&rft.au=Zhou%2C+Shixian&rft.date=2025-12-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=12&rft.issue=23&rft.spage=51701&rft.epage=51715&rft_id=info:doi/10.1109%2FJIOT.2025.3616228&rft.externalDocID=11184808 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |