Statistically Robust Beamforming Design for Joint Target Detection and Communications

The detection probability of radar, as a widely used sensing metric used by the integrated sensing and communication (ISAC) beamforming design, typically relies on the true sensing parameters, which can hardly be achieved. In this work, we present a statistically robust ISAC beamforming design to co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE internet of things journal Ročník 12; číslo 23; s. 51701 - 51715
Hlavní autori: Liu, Pingchuan, Shen, Hong, Xu, Wei, Zhou, Shixian, Zhao, Chunming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.12.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2327-4662, 2327-4662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The detection probability of radar, as a widely used sensing metric used by the integrated sensing and communication (ISAC) beamforming design, typically relies on the true sensing parameters, which can hardly be achieved. In this work, we present a statistically robust ISAC beamforming design to combat the performance degradation caused by the random sensing parameter estimation errors and the imperfect channel state information (CSI). Specifically, we first maximize the expectation of the radar output signal-to-interference-plus-noise ratio (SINR) over both the angle and the reflection coefficient estimation errors, while guaranteeing the communication users' SINR requirements. To address the challenging stochastic optimization problem, we first derive a tractable deterministic reformulation and then develop an efficient majorization-minimization (MM)-based algorithm, where the solutions to the base station (BS) transmit beamformer and the BS receive beamformer in each MM iteration are obtained via the alternating direction method of multipliers (ADMM) and the generalized Rayleigh quotient in a closed form, respectively. For the single communication user case, a semi-closed-form solution to the transmit beamformer can be achieved in each MM iteration. In addition, we also consider the imperfect CSI by introducing outage SINR constraints. Although the resultant problem is more difficult, we can still obtain a high-quality solution based on the algorithm developed for the previous problem. Simulation results indicate that, given the same communication constraints, the proposed MM-based robust design achieves better target detection performance than the traditional nonrobust designs and can even approach the clairvoyant scheme with known parameters.
AbstractList The detection probability of radar, as a widely used sensing metric used by the integrated sensing and communication (ISAC) beamforming design, typically relies on the true sensing parameters, which can hardly be achieved. In this work, we present a statistically robust ISAC beamforming design to combat the performance degradation caused by the random sensing parameter estimation errors and the imperfect channel state information (CSI). Specifically, we first maximize the expectation of the radar output signal-to-interference-plus-noise ratio (SINR) over both the angle and the reflection coefficient estimation errors, while guaranteeing the communication users' SINR requirements. To address the challenging stochastic optimization problem, we first derive a tractable deterministic reformulation and then develop an efficient majorization-minimization (MM)-based algorithm, where the solutions to the base station (BS) transmit beamformer and the BS receive beamformer in each MM iteration are obtained via the alternating direction method of multipliers (ADMM) and the generalized Rayleigh quotient in a closed form, respectively. For the single communication user case, a semi-closed-form solution to the transmit beamformer can be achieved in each MM iteration. In addition, we also consider the imperfect CSI by introducing outage SINR constraints. Although the resultant problem is more difficult, we can still obtain a high-quality solution based on the algorithm developed for the previous problem. Simulation results indicate that, given the same communication constraints, the proposed MM-based robust design achieves better target detection performance than the traditional nonrobust designs and can even approach the clairvoyant scheme with known parameters.
Author Zhou, Shixian
Shen, Hong
Liu, Pingchuan
Zhao, Chunming
Xu, Wei
Author_xml – sequence: 1
  givenname: Pingchuan
  orcidid: 0000-0003-3313-5924
  surname: Liu
  fullname: Liu, Pingchuan
  email: pingchuan-seu@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 2
  givenname: Hong
  orcidid: 0000-0002-2788-0349
  surname: Shen
  fullname: Shen, Hong
  email: shhseu@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0001-9341-8382
  surname: Xu
  fullname: Xu, Wei
  email: wxu@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 4
  givenname: Shixian
  surname: Zhou
  fullname: Zhou, Shixian
  email: zsxian@seu.edu.cn
  organization: China Mobile Zijin Research Institute, Nanjing, China
– sequence: 5
  givenname: Chunming
  orcidid: 0000-0002-2624-7322
  surname: Zhao
  fullname: Zhao, Chunming
  email: cmzhao@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
BookMark eNpNUMtqwzAQFCWFpmk-oNCDoGenWsmW7WObvhICgTY5C9mWgkIspZZ8yN9XJoH2tLvDzCwzt2hknVUI3QOZAZDyablYb2aU0GzGOHBKiys0pozmSco5Hf3bb9DU-z0hJMoyKPkYbb-DDMYHU8vD4YS_XNX7gF-UbLXrWmN3-FV5s7M4nnjpjA14I7udChEPqg7GWSxtg-eubXsbXQbE36FrLQ9eTS9zgrbvb5v5Z7Jafyzmz6ukBs5CooEqldUATZbLVLNU5gWrKGRQSZZzImnVNBXXVVbUDUhGGc-bgslK6lLTvGET9Hj2PXbup1c-iL3rOxtfihiZxZS8zCMLzqy6c953SotjZ1rZnQQQMRQohgLFUKC4FBg1D2eNUUr98QGKtCAF-wVLSG7b
CODEN IITJAU
Cites_doi 10.1109/TWC.2023.3250263
10.1109/TSP.2021.3135692
10.1109/JSTSP.2023.3239189
10.1017/CBO9780511804441
10.1109/LCOMM.2021.3140093
10.1109/TVT.2023.3240234
10.1109/TSP.2017.2787115
10.1109/MSP.2010.936019
10.1109/TSP.2014.2354312
10.1109/TCOMM.2023.3286461
10.1109/TSP.2008.919384
10.1109/TVT.2024.3426042
10.1287/mnsc.13.7.492
10.1109/TSP.2020.3004739
10.1109/JSAC.2022.3155529
10.1109/TAES.2008.4655353
10.1109/TCOMM.2019.2912383
10.1137/1.9780898718751
10.1109/JIOT.2024.3430894
10.1109/MNET.010.2100152
10.1109/LWC.2024.3454728
10.1109/LWC.2022.3198683
10.1109/JIOT.2022.3191386
10.1109/JSAC.2024.3460065
10.1109/TSP.2016.2601299
10.1109/ICCT59356.2023.10419580
10.1109/TSP.2006.879267
10.1109/JIOT.2023.3235618
10.1109/GLOBECOM54140.2023.10436717
10.1109/JIOT.2024.3486573
10.1109/TSP.2016.2535378
10.1109/7.135446
10.1109/TRS.2024.3368588
10.1109/JSAC.2022.3156632
10.1109/TAES.2013.6404093
10.1109/JSAC.2023.3287540
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2025.3616228
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 51715
ExternalDocumentID 10_1109_JIOT_2025_3616228
11184808
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
ABAZT
JQ2
L7M
L~C
L~D
M43
ID FETCH-LOGICAL-c163t-f12ee5c11d57a4f34a783b2151ba3760a2bddb6fb58cd1a32367d83abaf9f27d3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Thu Nov 20 16:52:00 EST 2025
Thu Nov 27 00:53:13 EST 2025
Wed Nov 26 07:22:48 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 23
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c163t-f12ee5c11d57a4f34a783b2151ba3760a2bddb6fb58cd1a32367d83abaf9f27d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9341-8382
0000-0002-2788-0349
0000-0002-2624-7322
0000-0003-3313-5924
PQID 3273110697
PQPubID 2040421
PageCount 15
ParticipantIDs ieee_primary_11184808
proquest_journals_3273110697
crossref_primary_10_1109_JIOT_2025_3616228
PublicationCentury 2000
PublicationDate 2025-Dec.1,-1
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-Dec.1,-1
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Golub (ref30) 1996
ref24
ref23
ref26
ref25
ref20
ref22
Kay (ref28) 1998; 2
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Bertsekas (ref32) 1997
References_xml – volume: 2
  year: 1998
  ident: ref28
  publication-title: Fundamentals of Statistical Signal Processing: Detection Theory
– ident: ref17
  doi: 10.1109/TWC.2023.3250263
– ident: ref9
  doi: 10.1109/TSP.2021.3135692
– ident: ref1
  doi: 10.1109/JSTSP.2023.3239189
– ident: ref39
  doi: 10.1017/CBO9780511804441
– ident: ref10
  doi: 10.1109/LCOMM.2021.3140093
– ident: ref12
  doi: 10.1109/TVT.2023.3240234
– ident: ref38
  doi: 10.1109/TSP.2017.2787115
– ident: ref34
  doi: 10.1109/MSP.2010.936019
– ident: ref20
  doi: 10.1109/TSP.2014.2354312
– ident: ref24
  doi: 10.1109/TCOMM.2023.3286461
– ident: ref19
  doi: 10.1109/TSP.2008.919384
– ident: ref27
  doi: 10.1109/TVT.2024.3426042
– ident: ref33
  doi: 10.1287/mnsc.13.7.492
– ident: ref6
  doi: 10.1109/TSP.2020.3004739
– ident: ref7
  doi: 10.1109/JSAC.2022.3155529
– ident: ref36
  doi: 10.1109/TAES.2008.4655353
– ident: ref22
  doi: 10.1109/TCOMM.2019.2912383
– ident: ref35
  doi: 10.1137/1.9780898718751
– ident: ref13
  doi: 10.1109/JIOT.2024.3430894
– ident: ref3
  doi: 10.1109/MNET.010.2100152
– ident: ref15
  doi: 10.1109/LWC.2024.3454728
– ident: ref23
  doi: 10.1109/LWC.2022.3198683
– ident: ref4
  doi: 10.1109/JIOT.2022.3191386
– ident: ref25
  doi: 10.1109/JSAC.2024.3460065
– ident: ref31
  doi: 10.1109/TSP.2016.2601299
– ident: ref26
  doi: 10.1109/ICCT59356.2023.10419580
– ident: ref8
  doi: 10.1109/TSP.2006.879267
– ident: ref2
  doi: 10.1109/JIOT.2023.3235618
– volume-title: Parallel and Distributed Computation: Numerical Methods
  year: 1997
  ident: ref32
– ident: ref16
  doi: 10.1109/GLOBECOM54140.2023.10436717
– ident: ref14
  doi: 10.1109/JIOT.2024.3486573
– ident: ref21
  doi: 10.1109/TSP.2016.2535378
– volume-title: Matrix Computations
  year: 1996
  ident: ref30
– ident: ref29
  doi: 10.1109/7.135446
– ident: ref18
  doi: 10.1109/TRS.2024.3368588
– ident: ref5
  doi: 10.1109/JSAC.2022.3156632
– ident: ref37
  doi: 10.1109/TAES.2013.6404093
– ident: ref11
  doi: 10.1109/JSAC.2023.3287540
SSID ssj0001105196
Score 2.359071
Snippet The detection probability of radar, as a widely used sensing metric used by the integrated sensing and communication (ISAC) beamforming design, typically...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 51701
SubjectTerms Algorithms
Angle of reflection
Array signal processing
Beamforming
Closed form solutions
Clutter
Communication
Constraints
Detection probability
Errors
Estimation error
Exact solutions
Integrated sensing and communication
integrated sensing and communication (ISAC)
majorization–minimization (MM)
Object detection
Optimization
Parameter estimation
Performance degradation
Radar
Radar detection
Reflectance
Robot sensing systems
Robust design
robust ISAC beamforming
Signal to noise ratio
Target detection
Vectors
Title Statistically Robust Beamforming Design for Joint Target Detection and Communications
URI https://ieeexplore.ieee.org/document/11184808
https://www.proquest.com/docview/3273110697
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ePBifVSsVtmDJyFtNptkN0efaJEq0kJvYTa7AaEm0qaC_96dTUoV8eAtCckQZjKZb3a_mSHkHCIbJgxwz1cRjjDzuZeE0mYpoZaIj_Os7jP7KEYjOZ0mz02xuquFMcY48pnp46Hby9dltsSlsoH1SysAS3s3hYjrYq31ggpDNBI3O5fMTwbDh6exzQCDqM9jFgc4cP1b7HHDVH79gV1YuWv_84V2yU6DH-llbfA9smGKfdJezWagjasekAmiSNeEGWazT_pSquWiolcG3hCl2nhFbxx3g9pTOixfi4qOHSncXq8cPaugUGj6o4Bk0SGTu9vx9b3XjFDwMgu0Ki9ngTFRxpiOBIQ5D0FIrjDMK0A6DARKYyGeimSmGXDs56YlBwV5kgdC80PSKsrCHBEaRhpyLYBBblM6HkkhpGKKCcgh4Fp1ycVKuel73SkjdRmGn6RoiRQtkTaW6JIOanN9Y6PILumt7JE2zrRIuYVYVkyciOM_Hjsh2yi9ppn0SKuaL80p2co-rKLnZ-47-QLh6b1c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-igr74LU6n5sEnobNpmqZ99GtMnVOkA9_KpUlBmJ24TvC_N5d2TBEffGtLm4a7Xu93yf3uCDkBYd2EAe75SmALM597SRjbKCXUMeLjIq_rzPblYBA_PyePDVndcWGMMS75zHTw0O3l63E-xaWyM2uXdgCk9i6JMAz8mq41X1JhiEeiZu-S-cnZ7c1DamPAQHR4xKIAW65_8z6uncqvf7BzLN31f05pg6w1CJKe1yrfJAum3CLrs-4MtDHWbTJEHOnKMMNo9Emfxmo6qeiFgVfEqdZj0SuXvUHtKb0dv5QVTV1auL1euQStkkKp6Q8KyWSHDLvX6WXPa5ooeLmFWpVXsMAYkTOmhYSw4CHImCt09AowIQYCpZGKp0ScawYcK7rpmIOCIikCqfkuWSzHpdkjNBQaCi2BQWGDOi5iKWPFFJNQQMC1apHTmXCzt7pWRuZiDD_JUBMZaiJrNNEiOyjN-Y2NIFukPdNH1pjTJOMWZNlhokTu__HYMVnppff9rH8zuDsgq_imOumkTRar96k5JMv5hxX6-5H7Zr4A5CnAow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistically+Robust+Beamforming+Design+for+Joint+Target+Detection+and+Communications&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Liu%2C+Pingchuan&rft.au=Shen%2C+Hong&rft.au=Xu%2C+Wei&rft.au=Zhou%2C+Shixian&rft.date=2025-12-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=12&rft.issue=23&rft.spage=51701&rft.epage=51715&rft_id=info:doi/10.1109%2FJIOT.2025.3616228&rft.externalDocID=11184808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon