SSRF-Net: A Stagewise Scheduled Rainfall Forecasting Network With an Asymmetric Architecture
Deterministic deep learning models for precipitation nowcasting often face several limitations, including cumulative error in long-sequence predictions, over-smoothing, and a reduced ability to capture rare, high-impact rainfall due to data imbalance. To address these challenges, we propose the stag...
Uložené v:
| Vydané v: | IEEE transactions on geoscience and remote sensing Ročník 63; s. 1 - 18 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deterministic deep learning models for precipitation nowcasting often face several limitations, including cumulative error in long-sequence predictions, over-smoothing, and a reduced ability to capture rare, high-impact rainfall due to data imbalance. To address these challenges, we propose the stagewise scheduled rainfall forecasting network (SSRF-Net), a convolutional framework for continuous multistep rainfall prediction that achieves lower floating-point operations (FLOPs) than competitive baselines under a standardized evaluation. Our framework introduces a multistage, sliding-window prediction mechanism trained with teacher forcing and scheduled sampling to mitigate error accumulation and stabilize training. We design an asymmetric encoder-decoder (E-D) architecture featuring a differential selective encoder (DSE) for selective feature compression and an additive fusion decoder (AFD) that progressively reconstructs details and alleviates over-smoothing. We further introduce an intensity-weighted Gaussian KL divergence loss that aligns sequence-level Gaussian summaries (means and variances) of predictions and ground truth via a KL term, prioritizing heavy-rain events without assuming pixelwise Gaussianity. Extensive experiments on the KNMI and SEVIR datasets show that SSRF-Net outperforms strong baselines, particularly for moderate to severe precipitation; on KNMI, it yields up to 41.8% higher per-frame critical success index (CSI) at the 30-mm/h threshold, with consistent gains on SEVIR. |
|---|---|
| AbstractList | Deterministic deep learning models for precipitation nowcasting often face several limitations, including cumulative error in long-sequence predictions, over-smoothing, and a reduced ability to capture rare, high-impact rainfall due to data imbalance. To address these challenges, we propose the stagewise scheduled rainfall forecasting network (SSRF-Net), a convolutional framework for continuous multistep rainfall prediction that achieves lower floating-point operations (FLOPs) than competitive baselines under a standardized evaluation. Our framework introduces a multistage, sliding-window prediction mechanism trained with teacher forcing and scheduled sampling to mitigate error accumulation and stabilize training. We design an asymmetric encoder–decoder (E–D) architecture featuring a differential selective encoder (DSE) for selective feature compression and an additive fusion decoder (AFD) that progressively reconstructs details and alleviates over-smoothing. We further introduce an intensity-weighted Gaussian KL divergence loss that aligns sequence-level Gaussian summaries (means and variances) of predictions and ground truth via a KL term, prioritizing heavy-rain events without assuming pixelwise Gaussianity. Extensive experiments on the KNMI and SEVIR datasets show that SSRF-Net outperforms strong baselines, particularly for moderate to severe precipitation; on KNMI, it yields up to 41.8% higher per-frame critical success index (CSI) at the 30-mm/h threshold, with consistent gains on SEVIR. |
| Author | Deng, Chuanhu Li, Chaorong Ling, Xudong Luo, Wenjie Wang, Zhuo |
| Author_xml | – sequence: 1 givenname: Wenjie orcidid: 0009-0005-2620-5770 surname: Luo fullname: Luo, Wenjie email: lwj018@stu.cqut.edu.cn organization: College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China – sequence: 2 givenname: Chaorong orcidid: 0000-0001-8336-2661 surname: Li fullname: Li, Chaorong email: lichaorong88@163.com organization: School of Computer Science and Technology (School of Artificial Intelligence), Yibin University, Yibin, China – sequence: 3 givenname: Xudong orcidid: 0009-0009-1128-8322 surname: Ling fullname: Ling, Xudong email: clearlyzero@stu.cqut.edu.cn organization: College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China – sequence: 4 givenname: Chuanhu surname: Deng fullname: Deng, Chuanhu email: onlyiyou@foxmail.com organization: College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China – sequence: 5 givenname: Zhuo surname: Wang fullname: Wang, Zhuo email: 1125556251@qq.com organization: College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China |
| BookMark | eNpFkEFrwjAUgMNwMHX7AYMdAjvXJWmSJrsVmW4gG1jHLoOSpk-t09YlKeK_X0Vhl_cu3_cefAPUq5saELqnZEQp0U-L6TwbMcLEKJaMSpZcoT4VQkVEct5DfUK1jJjS7AYNvN8QQrmgSR99Z9l8Er1DeMYpzoJZwaHygDO7hrLdQonnpqqXZrvFk8aBNT5U9Qp3_KFxP_irCmtsapz6424HwVUWp86uqwA2tA5u0XWneri77CH6nLwsxq_R7GP6Nk5nkaUyDlFRSmFUoZjWCRVSG6r40kqhpRZFN0wRS5CcdjAIzpNCWZKwhMiiFBZKHg_R4_nu3jW_LfiQb5rW1d3LPGZSKS2FUh1Fz5R1jfcOlvneVTvjjjkl-SlifoqYnyLml4id83B2KgD45yljPJYk_gPK3G5i |
| CODEN | IGRSD2 |
| Cites_doi | 10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2 10.5194/gmd-13-2631-2020 10.5194/gmd-12-4185-2019 10.1126/science.adi2336 10.3390/rs17091550 10.1109/IJCNN54540.2023.10191095 10.1109/IJCNN55064.2022.9892376 10.1007/s11390-021-1103-8 10.1007/s12040-024-02508-8 10.1109/TGRS.2021.3056470 10.3390/rs16142685 10.1007/978-3-319-24574-4_28 10.1007/978-3-319-67558-9_28 10.1256/qj.04.100 10.1109/TPAMI.2016.2644615 10.3390/atmos8030048 10.1038/s41598-025-98944-7 10.14711/thesis-991013340437803412 10.1029/2024GL113699 10.1175/aies-d-23-0017.1 10.1038/s41586-023-06184-4 10.1007/978-3-319-67389-9_44 10.1038/s41586-023-06185-3 10.1109/CVPR.2019.00949 10.1109/ICCV.2017.324 10.1109/LGRS.2022.3162882 10.1029/2020MS002203 10.1109/tgrs.2024.3510693 10.1016/j.neunet.2021.08.036 10.1016/j.envsoft.2024.106001 10.1609/aaai.v38i14.29521 10.1016/j.patrec.2021.01.036 10.1109/JSTARS.2020.3040648 10.1109/CVPR.2019.00937 10.1175/BAMS-D-11-00263.1 10.1016/j.atmosres.2022.106500 10.1029/2019EA000812 10.1109/JSTARS.2025.3549678 10.1109/tgrs.2025.3528423 10.1038/s41467-022-32483-x 10.1109/TGRS.2021.3100847 10.1038/s41586-021-03854-z |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2025.3621627 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 18 |
| ExternalDocumentID | 10_1109_TGRS_2025_3621627 11224360 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Yibin University Science and Technology grantid: 2024XJYY03; 2023YY02; 2023YY05; 2025XJZD01 funderid: 10.13039/501100003473 – fundername: Science and Technology Department of Sichuan Province grantid: 2024ZYD0089 funderid: 10.13039/501100011447 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c163t-bd65a8b829971569a184fc659695b969ab36e641163e5447b8c072706bd5ced43 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Thu Nov 06 11:20:03 EST 2025 Sat Nov 29 06:58:52 EST 2025 Wed Nov 19 08:27:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c163t-bd65a8b829971569a184fc659695b969ab36e641163e5447b8c072706bd5ced43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0005-2620-5770 0000-0001-8336-2661 0009-0009-1128-8322 |
| PQID | 3268896588 |
| PQPubID | 85465 |
| PageCount | 18 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2025_3621627 proquest_journals_3268896588 ieee_primary_11224360 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | Bengio (ref42); 1 ref15 ref14 Shi (ref12); 28 ref53 ref52 ref11 Shi (ref41) ref10 ref54 ref17 ref16 ref19 ref18 Sønderby (ref37) 2020 ref51 ref46 ref45 ref47 Wang (ref50) ref44 ref43 Masson-Delmotte (ref5); 2 ref8 ref7 ref9 ref4 ref3 ref6 Park (ref25) ref40 ref35 ref34 Yan (ref48); 37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Turzi (ref21) 2025 ref24 ref23 ref26 ref20 ref22 ref28 Wang (ref13); 30 ref27 ref29 Kingma (ref49) 2014 Pathak (ref36) 2022 |
| References_xml | – ident: ref11 doi: 10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2 – ident: ref14 doi: 10.5194/gmd-13-2631-2020 – ident: ref3 doi: 10.5194/gmd-12-4185-2019 – ident: ref39 doi: 10.1126/science.adi2336 – ident: ref24 doi: 10.3390/rs17091550 – ident: ref32 doi: 10.1109/IJCNN54540.2023.10191095 – ident: ref52 doi: 10.1109/IJCNN55064.2022.9892376 – ident: ref7 doi: 10.1007/s11390-021-1103-8 – ident: ref20 doi: 10.1007/s12040-024-02508-8 – ident: ref4 doi: 10.1109/TGRS.2021.3056470 – year: 2022 ident: ref36 article-title: FourCastNet: A global data-driven high-resolution weather model using adaptive Fourier neural operators publication-title: arXiv:2202.11214 – ident: ref27 doi: 10.3390/rs16142685 – ident: ref18 doi: 10.1007/978-3-319-24574-4_28 – ident: ref46 doi: 10.1007/978-3-319-67558-9_28 – ident: ref9 doi: 10.1256/qj.04.100 – ident: ref33 doi: 10.1109/TPAMI.2016.2644615 – ident: ref10 doi: 10.3390/atmos8030048 – ident: ref40 doi: 10.1038/s41598-025-98944-7 – volume: 2 start-page: 2391 issue: 1 volume-title: Proc. Contribution Work. Group I 6th Assessment Rep. Intergovernmental Panel Climate Change ident: ref5 article-title: Climate change 2021: The physical science basis – ident: ref23 doi: 10.14711/thesis-991013340437803412 – ident: ref34 doi: 10.1029/2024GL113699 – ident: ref28 doi: 10.1175/aies-d-23-0017.1 – volume: 37 start-page: 100007 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref48 article-title: Fourier amplitude and correlation loss: Beyond using L2 loss for skillful precipitation nowcasting – ident: ref2 doi: 10.1038/s41586-023-06184-4 – start-page: 5123 volume-title: Proc. PMLR Int. Conf. Mach. Learn. ident: ref50 article-title: PredRNN++: Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning – year: 2014 ident: ref49 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref47 doi: 10.1007/978-3-319-67389-9_44 – ident: ref35 doi: 10.1038/s41586-023-06185-3 – ident: ref45 doi: 10.1109/CVPR.2019.00949 – ident: ref44 doi: 10.1109/ICCV.2017.324 – ident: ref22 doi: 10.1109/LGRS.2022.3162882 – volume: 28 start-page: 802 volume-title: Proc. Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst. ident: ref12 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting – ident: ref43 doi: 10.1029/2020MS002203 – ident: ref26 doi: 10.1109/tgrs.2024.3510693 – ident: ref19 doi: 10.1016/j.neunet.2021.08.036 – ident: ref6 doi: 10.1016/j.envsoft.2024.106001 – year: 2025 ident: ref21 article-title: SSA-UNet: Advanced precipitation nowcasting via channel shuffling publication-title: arXiv:2504.18309 – year: 2020 ident: ref37 article-title: MetNet: A neural weather model for precipitation forecasting publication-title: arXiv:2003.12140 – ident: ref53 doi: 10.1609/aaai.v38i14.29521 – start-page: 1 volume-title: Proc. NeurIPS ident: ref25 article-title: Nowformer: A locally enhanced temporal learner for precipitation nowcasting – volume: 1 start-page: 1171 volume-title: Proc. 29th Int. Conf. Neural Inf. Process. Syst. ident: ref42 article-title: Scheduled sampling for sequence prediction with recurrent neural networks – ident: ref15 doi: 10.1016/j.patrec.2021.01.036 – ident: ref17 doi: 10.1109/JSTARS.2020.3040648 – start-page: 5622 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref41 article-title: Deep learning for precipitation nowcasting: A benchmark and a new model – ident: ref51 doi: 10.1109/CVPR.2019.00937 – ident: ref8 doi: 10.1175/BAMS-D-11-00263.1 – ident: ref29 doi: 10.1016/j.atmosres.2022.106500 – ident: ref31 doi: 10.1029/2019EA000812 – ident: ref54 doi: 10.1109/JSTARS.2025.3549678 – volume: 30 start-page: 879 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref13 article-title: PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs – ident: ref16 doi: 10.1109/tgrs.2025.3528423 – ident: ref38 doi: 10.1038/s41467-022-32483-x – ident: ref30 doi: 10.1109/TGRS.2021.3100847 – ident: ref1 doi: 10.1038/s41586-021-03854-z |
| SSID | ssj0014517 |
| Score | 2.465252 |
| Snippet | Deterministic deep learning models for precipitation nowcasting often face several limitations, including cumulative error in long-sequence predictions,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Asymmetric encoder–decoder (E–D) Asymmetry Coders Compression Data models Decoding Deep learning error accumulation Floating point arithmetic Forecasting iterative prediction Meteorological radar Nowcasting Precipitation precipitation nowcasting Predictions Predictive models Rain Rainfall Reliability Smoothing Spatiotemporal phenomena Training |
| Title | SSRF-Net: A Stagewise Scheduled Rainfall Forecasting Network With an Asymmetric Architecture |
| URI | https://ieeexplore.ieee.org/document/11224360 https://www.proquest.com/docview/3268896588 |
| Volume | 63 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qCnrwLa4vcvAkRJttmibeFnH1IIu4ih6EkiZTXVhXsV3Ff-8krbogHryUHtJS5kvnkW8ehOxzZ41Gy8VUbCQT3HGmlVGssJobDTw3NjRxvUh7PXV3py-bYvVQCwMAIfkMDv1t4PLdsx37o7Ij7mmgWGKEPp2msi7W-qYMRMKb2mjJMIpoNxQmj_TR9dlVH0PBdnKI6ppLP0FmwgiFqSq_VHGwL92lf37ZMllsHEnaqZFfIVMwWiULE-0FV8lcSO-05Rq57_evuqwH1THtUPQvH-B9UALtI2JuPARHPc1TmOGQ-lGd1pQ-GZr26hRxejuoHqkZ0U758fTkJ3BZ2pngH9bJTff0-uScNXMVmEXvq2K5k4lRuUJLlGL4pg1GeYWViZY6yfFi8liCFBwXQyJEmisboZsTydwlFpyIN8jM6HkEm4RaJ7Qp0tjTh0IK3BFxGkUgI1Ogri2gRQ6-BJ291O0zshB2RDrzqGQelaxBpUXWvWR_FjZCbZGdL2yy5g8rM3Q7lfKda9TWH49tk3n_9vq8ZIfMVK9j2CWz9q0alK97YfN8Al9AwIA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1VbRH0QKEUsdCCD5yQ3MYbx7G5rRDbIpYIdRfRA1Lk2BNYabtFTRbEv-_YSelKiEMvUQ6OEs04M_P85gPgtfDOGvJcXKdWcSm84EZbzWtnhDUoKutiE9dJXhT6_Nx87ovVYy0MIsbkMzwKt5HL95duFY7KjkWggVJFCH0rk3KYdOVaf0kDmYm-OlpxwhHDnsQUiTmenZxNCQwOsyMy2EKFGTJrbijOVfnHGEcPM96947c9god9KMlGne4fwwYu92BnrcHgHtyLCZ6ueQLfptOzMS-wfctGjCLM7_h73iCbks78aoGeBaKntosFC8M6nW1COjQruiRx9nXe_mB2yUbNn4uLMIPLsdEaA7EPX8bvZ-9OeT9ZgTuKv1peeZVZXWnyRTkBOGMJ59VOZUaZrKKLrVKFSgpajCTpvNIuoUAnUZXPHHqZPoXN5eUSnwFzXhpb52kgEKWStCfSPElQJbYma1vjAN7cCLr82TXQKCPwSEwZtFIGrZS9VgawHyR7u7AX6gAObnRT9v9YU1LgqXXoXaOf_-exV3D_dPZpUk4-FB9fwIPwpu705AA226sVHsK2-9XOm6uXcSNdA5Dzw8c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSRF-Net%3A+A+Stagewise+Scheduled+Rainfall+Forecasting+Network+With+an+Asymmetric+Architecture&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Luo%2C+Wenjie&rft.au=Li%2C+Chaorong&rft.au=Ling%2C+Xudong&rft.au=Deng%2C+Chuanhu&rft.date=2025&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=63&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1109%2FTGRS.2025.3621627&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2025_3621627 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |