MDJSCC: Multiscale Feature Learning-Based Semantic Communications for Maritime Vessel Networks
Maritime vessel networks face critical communication challenges due to severe signal attenuation induced by dynamic oceanic conditions, including vessel mobility, wave disturbances, and atmospheric variability. These conditions result in high transmission latency and poor communication reliability,...
Uloženo v:
| Vydáno v: | IEEE sensors journal Ročník 25; číslo 22; s. 42251 - 42264 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
15.11.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Maritime vessel networks face critical communication challenges due to severe signal attenuation induced by dynamic oceanic conditions, including vessel mobility, wave disturbances, and atmospheric variability. These conditions result in high transmission latency and poor communication reliability, making traditional bit-level communication techniques insufficient for supporting efficient and stable data exchange. To~address this issue, this work proposes multiscale feature learning (ML)-driven semantic communications for maritime vessel networks. Specifically, a maritime vessel communication model is constructed with consideration for flexibility and scalability in maritime communications, and the propagation characteristics of marine signals were simulated based on the Rician fading channel. Building upon this model, a~novel semantic communication framework named multiscale deep joint source-channel coding (MDJSCC) is developed. Combining deep learning techniques, MDJSCC enables adaptive transmission strategies based on varying channel states and compression requirements, thereby improving robustness in complex maritime environments. More importantly, a~multiscale learning block is introduced to enhance the feature extraction capability for maritime data by integrating multilayer convolutional networks. Extensive experiments are conducted on the public ocean buoy and marine image datasets. The results demonstrate that the proposed MDJSCC can achieve significant gains over traditional marine communication at low signal-to-noise ratios (SNRs) and outperforms state-of-the-art methods, yielding 22.5% and 12.4% PSNR improvements over DeepJSCC and SwinJSCC while concurrently reducing transmission volume and ensuring robust marine communication performance. |
|---|---|
| AbstractList | Maritime vessel networks face critical communication challenges due to severe signal attenuation induced by dynamic oceanic conditions, including vessel mobility, wave disturbances, and atmospheric variability. These conditions result in high transmission latency and poor communication reliability, making traditional bit-level communication techniques insufficient for supporting efficient and stable data exchange. To~address this issue, this work proposes multiscale feature learning (ML)-driven semantic communications for maritime vessel networks. Specifically, a maritime vessel communication model is constructed with consideration for flexibility and scalability in maritime communications, and the propagation characteristics of marine signals were simulated based on the Rician fading channel. Building upon this model, a~novel semantic communication framework named multiscale deep joint source-channel coding (MDJSCC) is developed. Combining deep learning techniques, MDJSCC enables adaptive transmission strategies based on varying channel states and compression requirements, thereby improving robustness in complex maritime environments. More importantly, a~multiscale learning block is introduced to enhance the feature extraction capability for maritime data by integrating multilayer convolutional networks. Extensive experiments are conducted on the public ocean buoy and marine image datasets. The results demonstrate that the proposed MDJSCC can achieve significant gains over traditional marine communication at low signal-to-noise ratios (SNRs) and outperforms state-of-the-art methods, yielding 22.5% and 12.4% PSNR improvements over DeepJSCC and SwinJSCC while concurrently reducing transmission volume and ensuring robust marine communication performance. |
| Author | Wang, Chongyang Wang, Xinkun Li, Dongyang Zhu, Jinze Meng, Zihan Li, Lianghai Li, Shibao |
| Author_xml | – sequence: 1 givenname: Shibao orcidid: 0000-0002-3924-9001 surname: Li fullname: Li, Shibao email: lishibao@upc.edu.cn organization: College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China – sequence: 2 givenname: Xinkun surname: Wang fullname: Wang, Xinkun email: z24160150@s.upc.edu.cn organization: College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China – sequence: 3 givenname: Dongyang orcidid: 0009-0009-9779-4815 surname: Li fullname: Li, Dongyang email: lidongyang@upc.edu.cn organization: College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China – sequence: 4 givenname: Chongyang surname: Wang fullname: Wang, Chongyang email: 2116040221@s.upc.edu.cn organization: College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China – sequence: 5 givenname: Zihan surname: Meng fullname: Meng, Zihan email: S24160037@s.upc.edu.cn organization: College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China – sequence: 6 givenname: Jinze surname: Zhu fullname: Zhu, Jinze email: B23160008@s.upc.edu.cn organization: College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China – sequence: 7 givenname: Lianghai surname: Li fullname: Li, Lianghai email: llianghai@163.com organization: Beijing Research Institute of Telemetry, Beijing, China |
| BookMark | eNpFkMtOwzAQRS1UJErhA5BYWGKd4rEd22EH4a0WFgXEish1JsilSYqdCPH3tGolVnMX596RziEZNG2DhJwAGwOw7PxxdvM05oynY6FASsX3yBDS1CSgpRlssmCJFPr9gBzGuGAMMp3qIfmYXj_O8vyCTvtl56OzS6S3aLs-IJ2gDY1vPpMrG7GkM6xt03lH87au-8Y72_m2ibRqA53a4DtfI33DGHFJn7D7acNXPCL7lV1GPN7dEXm9vXnJ75PJ891DfjlJHCjRJUKWylgusVJGloxXvNTArTPMSeWUs0aVKTCepVnmhJ4zo0C4OdhM6kqnlRiRs-3uKrTfPcauWLR9aNYvC8E1ZCaVWq0p2FIutDEGrIpV8LUNvwWwYqOx2GgsNhqLncZ153Tb8Yj4zwMYLZkWf136b6U |
| CODEN | ISJEAZ |
| Cites_doi | 10.1109/TIT.2010.2053897 10.3390/electronics11091358 10.3390/s24030957 10.1109/ICC.2003.1204109 10.1109/MWC.101.2100269 10.1109/IConSCEPT61884.2024.10627891 10.1109/TSP.2021.3071210 10.1109/MWC.013.2100642 10.1109/TCSVT.2021.3082521 10.1186/s40537-022-00652-w 10.1109/ACCESS.2018.2879902 10.1109/OCEANSE.2005.1511792 10.1162/tacl_a_00477 10.7763/IJFCC.2012.V1.95 10.23919/JCC.2022.09.005 10.1007/s11042-020-10035-z 10.1109/COMST.2022.3223224 10.1109/TCCN.2024.3424842 10.1109/JIOT.2020.2993411 10.1109/TCCN.2019.2919300 10.1109/CECIT53797.2021.00088 10.1109/IWCMC51323.2021.9498601 10.1109/TWC.2023.3234408 10.1109/ACCESS.2017.2771342 10.1109/ICID52250.2020.00033 10.1109/JIOT.2022.3219674 10.1007/s11082-023-05721-9 10.1080/00207217.2019.1692373 10.1002/mop.32202 10.1007/s11082-024-07426-z 10.1016/j.rsma.2021.102031 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2025.3614462 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 42264 |
| ExternalDocumentID | 10_1109_JSEN_2025_3614462 11187407 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China; NSFC grantid: 62401630 funderid: 10.13039/501100001809 – fundername: Innovative Development Joint Fund Key Projects of Shandong NSF grantid: ZR2023LZH010; ZR2024LZH013 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c163t-34d68a24ef684d02f2d712ac80c46c6ca86d51029599c37b08613cb1a947f75f3 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Thu Nov 20 00:43:58 EST 2025 Sat Nov 29 06:48:57 EST 2025 Wed Nov 19 08:27:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c163t-34d68a24ef684d02f2d712ac80c46c6ca86d51029599c37b08613cb1a947f75f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3924-9001 0009-0009-9779-4815 |
| PQID | 3271985476 |
| PQPubID | 75733 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3271985476 ieee_primary_11187407 crossref_primary_10_1109_JSEN_2025_3614462 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Nov.15,-15 |
| PublicationDateYYYYMMDD | 2025-11-15 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-Nov.15,-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref31 ref30 ref11 Han (ref20) ref33 ref10 Pan (ref21) 2020; 21 ref2 ref1 ref17 ref16 ref19 ref18 Liu (ref14) 2022; 11 Chen (ref26) 2021; 48 ref24 Tan (ref36) 2022 ref23 Ballé (ref34) 2015 Liu (ref25) 2024; 24 ref22 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Muneer (ref32) 2007 |
| References_xml | – ident: ref10 doi: 10.1109/TIT.2010.2053897 – volume: 11 start-page: 1358 issue: 9 year: 2022 ident: ref14 article-title: Enhancing communication reliability from the semantic level under low SNR publication-title: Electronics doi: 10.3390/electronics11091358 – volume: 24 start-page: 957 issue: 3 year: 2024 ident: ref25 article-title: CNN and attention-based joint source channel coding for semantic communications in WSNs publication-title: Sensors doi: 10.3390/s24030957 – ident: ref31 doi: 10.1109/ICC.2003.1204109 – ident: ref11 doi: 10.1109/MWC.101.2100269 – ident: ref15 doi: 10.1109/IConSCEPT61884.2024.10627891 – start-page: 15908 volume-title: Proc. NIPS ident: ref20 article-title: Transformer in transformer – ident: ref19 doi: 10.1109/TSP.2021.3071210 – ident: ref12 doi: 10.1109/MWC.013.2100642 – ident: ref17 doi: 10.1109/TCSVT.2021.3082521 – ident: ref22 doi: 10.1186/s40537-022-00652-w – ident: ref3 doi: 10.1109/ACCESS.2018.2879902 – year: 2022 ident: ref36 article-title: SSD: Towards better text-image consistency metric in text-to-image generation publication-title: arXiv:2210.15235 – ident: ref30 doi: 10.1109/OCEANSE.2005.1511792 – ident: ref23 doi: 10.1162/tacl_a_00477 – ident: ref27 doi: 10.7763/IJFCC.2012.V1.95 – ident: ref7 doi: 10.23919/JCC.2022.09.005 – volume: 21 start-page: 1 year: 2020 ident: ref21 article-title: Transfer learning publication-title: Learning – ident: ref35 doi: 10.1007/s11042-020-10035-z – ident: ref13 doi: 10.1109/COMST.2022.3223224 – ident: ref24 doi: 10.1109/TCCN.2024.3424842 – ident: ref1 doi: 10.1109/JIOT.2020.2993411 – ident: ref16 doi: 10.1109/TCCN.2019.2919300 – ident: ref6 doi: 10.1109/CECIT53797.2021.00088 – ident: ref28 doi: 10.1109/IWCMC51323.2021.9498601 – ident: ref18 doi: 10.1109/TWC.2023.3234408 – ident: ref29 doi: 10.1109/ACCESS.2017.2771342 – ident: ref5 doi: 10.1109/ICID52250.2020.00033 – ident: ref4 doi: 10.1109/JIOT.2022.3219674 – ident: ref9 doi: 10.1007/s11082-023-05721-9 – ident: ref2 doi: 10.1080/00207217.2019.1692373 – year: 2007 ident: ref32 article-title: Rician-k factor study for temporal and spatial variations – ident: ref33 doi: 10.1002/mop.32202 – year: 2015 ident: ref34 article-title: Density modeling of images using a generalized normalization transformation publication-title: arXiv:1511.06281 – ident: ref8 doi: 10.1007/s11082-024-07426-z – volume: 48 year: 2021 ident: ref26 article-title: A survey of maritime communications: From the wireless channel measurements and modeling perspective publication-title: Regional Stud. Mar. Sci. doi: 10.1016/j.rsma.2021.102031 |
| SSID | ssj0019757 |
| Score | 2.4444194 |
| Snippet | Maritime vessel networks face critical communication challenges due to severe signal attenuation induced by dynamic oceanic conditions, including vessel... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 42251 |
| SubjectTerms | Adaptation models Communication Computer architecture Data exchange Deep learning Encoding Feature extraction Joint source–channel coding marine communication Maritime communications maritime vessel networks Multilayers Networks Reliability Sea vessels semantic Semantic communication Semantics Sensors Signal to noise ratio Wireless communication |
| Title | MDJSCC: Multiscale Feature Learning-Based Semantic Communications for Maritime Vessel Networks |
| URI | https://ieeexplore.ieee.org/document/11187407 https://www.proquest.com/docview/3271985476 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS1wxEB6qFKwHW63SVVty8FSIJnl5-eHNbpUiuBTWlj35yCYTFeoqu26h_71JNrZK6aG3d3i_mC_zZuZNvm8A9lAjRoeaco6eyoiMpixDUJdilRChZU7FMmxCDwZmNLJfK1m9cGEQsWw-w_18WHr54dbP86-yA87LBDm9BEtaqwVZ63fLwOoi65k8mFHZ6FFtYXJmD06Hx4NUCop2vyn1j3gWhMpUlb8-xSW-nLz-zzd7A2s1kSRHC-TX4QVONmD1ibzgBqzUCedXv97Cxdnn02G_f0gK43aWkEGS07_5FEnVWL2kn1JIC2SIN8nc1548I4_MSEpvyZnLIkg3SL5nzfEfZLDYRT7bhG8nx-f9L7TOVqA-ZWD3tJFBGSckRmVkYCKKoLlw3jAvlVfeGRWSuwrbWusbPU6VD2_8mDsrddRtbLZgeXI7wXdAfHQ2auNxrFoprTAheBPTAzQLDfPjHnx8NHZ3t5DQ6ErpwWyXkekyMl1Fpgeb2bp_TqyG7cHuIz5d9bJZ1wjNrWmlVtv_uGwHXuW7Z_Igb3dh-X46x_fw0v9Mlp5-KAvoAdp7w4A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxQxEJ4gmIAPoAjxBLQPPpkU2m532_oGJwSR25gcmnty02unaiKHueNM_Pe2vaIS4gNv-7Cbbubr7Mzs9PsG4BUqxGBRUc7RURmQ0ZhlCGpjrBLC18w2IQ-bUG2rRyPzoZDVMxcGEfPhM9xPl7mX76_cPP0qO-A8T5BTD2ClllKwBV3rT9PAqCzsGX2YUVmpUWlicmYOzobHbSwGRb1f5QpI3ApDea7KnY9xjjAnG_d8t8ewXlJJcrjA_gks4WQTHv0jMLgJq2XG-ddfT-Hz4O3ZsN9_QzLndhaxQZISwPkUSVFZ_UKPYlDzZIiX0eDfHLlFH5mRmOCSgU0ySJdIPiXV8e-kXZwjn23Bx5Pji_4pLdMVqIs52DWtpG-0FRJDo6VnIgivuLBOMycb1zirGx8dVpjaGFepcax9eOXG3BqpgqpDtQ3Lk6sJPgPigjVBaYfjJuJihPbe6RAXUMxXzI178PrG2N2PhYhGl4sPZrqETJeQ6QoyPdhK1v17YzFsD3Zv8OmKn826SihudC1V8_w_j72E1dOLwXl3_q59vwNraaVEJeT1LixfT-e4Bw_dz2j16Yu8mX4DMenGxw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDJSCC%3A+Multiscale+Feature+Learning-Based+Semantic+Communications+for+Maritime+Vessel+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Li%2C+Shibao&rft.au=Wang%2C+Xinkun&rft.au=Li%2C+Dongyang&rft.au=Wang%2C+Chongyang&rft.date=2025-11-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=22&rft.spage=42251&rft.epage=42264&rft_id=info:doi/10.1109%2FJSEN.2025.3614462&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |