MDJSCC: Multiscale Feature Learning-Based Semantic Communications for Maritime Vessel Networks

Maritime vessel networks face critical communication challenges due to severe signal attenuation induced by dynamic oceanic conditions, including vessel mobility, wave disturbances, and atmospheric variability. These conditions result in high transmission latency and poor communication reliability,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 25; číslo 22; s. 42251 - 42264
Hlavní autoři: Li, Shibao, Wang, Xinkun, Li, Dongyang, Wang, Chongyang, Meng, Zihan, Zhu, Jinze, Li, Lianghai
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.11.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Maritime vessel networks face critical communication challenges due to severe signal attenuation induced by dynamic oceanic conditions, including vessel mobility, wave disturbances, and atmospheric variability. These conditions result in high transmission latency and poor communication reliability, making traditional bit-level communication techniques insufficient for supporting efficient and stable data exchange. To~address this issue, this work proposes multiscale feature learning (ML)-driven semantic communications for maritime vessel networks. Specifically, a maritime vessel communication model is constructed with consideration for flexibility and scalability in maritime communications, and the propagation characteristics of marine signals were simulated based on the Rician fading channel. Building upon this model, a~novel semantic communication framework named multiscale deep joint source-channel coding (MDJSCC) is developed. Combining deep learning techniques, MDJSCC enables adaptive transmission strategies based on varying channel states and compression requirements, thereby improving robustness in complex maritime environments. More importantly, a~multiscale learning block is introduced to enhance the feature extraction capability for maritime data by integrating multilayer convolutional networks. Extensive experiments are conducted on the public ocean buoy and marine image datasets. The results demonstrate that the proposed MDJSCC can achieve significant gains over traditional marine communication at low signal-to-noise ratios (SNRs) and outperforms state-of-the-art methods, yielding 22.5% and 12.4% PSNR improvements over DeepJSCC and SwinJSCC while concurrently reducing transmission volume and ensuring robust marine communication performance.
AbstractList Maritime vessel networks face critical communication challenges due to severe signal attenuation induced by dynamic oceanic conditions, including vessel mobility, wave disturbances, and atmospheric variability. These conditions result in high transmission latency and poor communication reliability, making traditional bit-level communication techniques insufficient for supporting efficient and stable data exchange. To~address this issue, this work proposes multiscale feature learning (ML)-driven semantic communications for maritime vessel networks. Specifically, a maritime vessel communication model is constructed with consideration for flexibility and scalability in maritime communications, and the propagation characteristics of marine signals were simulated based on the Rician fading channel. Building upon this model, a~novel semantic communication framework named multiscale deep joint source-channel coding (MDJSCC) is developed. Combining deep learning techniques, MDJSCC enables adaptive transmission strategies based on varying channel states and compression requirements, thereby improving robustness in complex maritime environments. More importantly, a~multiscale learning block is introduced to enhance the feature extraction capability for maritime data by integrating multilayer convolutional networks. Extensive experiments are conducted on the public ocean buoy and marine image datasets. The results demonstrate that the proposed MDJSCC can achieve significant gains over traditional marine communication at low signal-to-noise ratios (SNRs) and outperforms state-of-the-art methods, yielding 22.5% and 12.4% PSNR improvements over DeepJSCC and SwinJSCC while concurrently reducing transmission volume and ensuring robust marine communication performance.
Author Wang, Chongyang
Wang, Xinkun
Li, Dongyang
Zhu, Jinze
Meng, Zihan
Li, Lianghai
Li, Shibao
Author_xml – sequence: 1
  givenname: Shibao
  orcidid: 0000-0002-3924-9001
  surname: Li
  fullname: Li, Shibao
  email: lishibao@upc.edu.cn
  organization: College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China
– sequence: 2
  givenname: Xinkun
  surname: Wang
  fullname: Wang, Xinkun
  email: z24160150@s.upc.edu.cn
  organization: College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China
– sequence: 3
  givenname: Dongyang
  orcidid: 0009-0009-9779-4815
  surname: Li
  fullname: Li, Dongyang
  email: lidongyang@upc.edu.cn
  organization: College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China
– sequence: 4
  givenname: Chongyang
  surname: Wang
  fullname: Wang, Chongyang
  email: 2116040221@s.upc.edu.cn
  organization: College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China
– sequence: 5
  givenname: Zihan
  surname: Meng
  fullname: Meng, Zihan
  email: S24160037@s.upc.edu.cn
  organization: College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China
– sequence: 6
  givenname: Jinze
  surname: Zhu
  fullname: Zhu, Jinze
  email: B23160008@s.upc.edu.cn
  organization: College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China
– sequence: 7
  givenname: Lianghai
  surname: Li
  fullname: Li, Lianghai
  email: llianghai@163.com
  organization: Beijing Research Institute of Telemetry, Beijing, China
BookMark eNpFkMtOwzAQRS1UJErhA5BYWGKd4rEd22EH4a0WFgXEish1JsilSYqdCPH3tGolVnMX596RziEZNG2DhJwAGwOw7PxxdvM05oynY6FASsX3yBDS1CSgpRlssmCJFPr9gBzGuGAMMp3qIfmYXj_O8vyCTvtl56OzS6S3aLs-IJ2gDY1vPpMrG7GkM6xt03lH87au-8Y72_m2ibRqA53a4DtfI33DGHFJn7D7acNXPCL7lV1GPN7dEXm9vXnJ75PJ891DfjlJHCjRJUKWylgusVJGloxXvNTArTPMSeWUs0aVKTCepVnmhJ4zo0C4OdhM6kqnlRiRs-3uKrTfPcauWLR9aNYvC8E1ZCaVWq0p2FIutDEGrIpV8LUNvwWwYqOx2GgsNhqLncZ153Tb8Yj4zwMYLZkWf136b6U
CODEN ISJEAZ
Cites_doi 10.1109/TIT.2010.2053897
10.3390/electronics11091358
10.3390/s24030957
10.1109/ICC.2003.1204109
10.1109/MWC.101.2100269
10.1109/IConSCEPT61884.2024.10627891
10.1109/TSP.2021.3071210
10.1109/MWC.013.2100642
10.1109/TCSVT.2021.3082521
10.1186/s40537-022-00652-w
10.1109/ACCESS.2018.2879902
10.1109/OCEANSE.2005.1511792
10.1162/tacl_a_00477
10.7763/IJFCC.2012.V1.95
10.23919/JCC.2022.09.005
10.1007/s11042-020-10035-z
10.1109/COMST.2022.3223224
10.1109/TCCN.2024.3424842
10.1109/JIOT.2020.2993411
10.1109/TCCN.2019.2919300
10.1109/CECIT53797.2021.00088
10.1109/IWCMC51323.2021.9498601
10.1109/TWC.2023.3234408
10.1109/ACCESS.2017.2771342
10.1109/ICID52250.2020.00033
10.1109/JIOT.2022.3219674
10.1007/s11082-023-05721-9
10.1080/00207217.2019.1692373
10.1002/mop.32202
10.1007/s11082-024-07426-z
10.1016/j.rsma.2021.102031
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2025.3614462
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 42264
ExternalDocumentID 10_1109_JSEN_2025_3614462
11187407
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; NSFC
  grantid: 62401630
  funderid: 10.13039/501100001809
– fundername: Innovative Development Joint Fund Key Projects of Shandong NSF
  grantid: ZR2023LZH010; ZR2024LZH013
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c163t-34d68a24ef684d02f2d712ac80c46c6ca86d51029599c37b08613cb1a947f75f3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Thu Nov 20 00:43:58 EST 2025
Sat Nov 29 06:48:57 EST 2025
Wed Nov 19 08:27:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c163t-34d68a24ef684d02f2d712ac80c46c6ca86d51029599c37b08613cb1a947f75f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3924-9001
0009-0009-9779-4815
PQID 3271985476
PQPubID 75733
PageCount 14
ParticipantIDs proquest_journals_3271985476
ieee_primary_11187407
crossref_primary_10_1109_JSEN_2025_3614462
PublicationCentury 2000
PublicationDate 2025-Nov.15,-15
PublicationDateYYYYMMDD 2025-11-15
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-Nov.15,-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref31
ref30
ref11
Han (ref20)
ref33
ref10
Pan (ref21) 2020; 21
ref2
ref1
ref17
ref16
ref19
ref18
Liu (ref14) 2022; 11
Chen (ref26) 2021; 48
ref24
Tan (ref36) 2022
ref23
Ballé (ref34) 2015
Liu (ref25) 2024; 24
ref22
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Muneer (ref32) 2007
References_xml – ident: ref10
  doi: 10.1109/TIT.2010.2053897
– volume: 11
  start-page: 1358
  issue: 9
  year: 2022
  ident: ref14
  article-title: Enhancing communication reliability from the semantic level under low SNR
  publication-title: Electronics
  doi: 10.3390/electronics11091358
– volume: 24
  start-page: 957
  issue: 3
  year: 2024
  ident: ref25
  article-title: CNN and attention-based joint source channel coding for semantic communications in WSNs
  publication-title: Sensors
  doi: 10.3390/s24030957
– ident: ref31
  doi: 10.1109/ICC.2003.1204109
– ident: ref11
  doi: 10.1109/MWC.101.2100269
– ident: ref15
  doi: 10.1109/IConSCEPT61884.2024.10627891
– start-page: 15908
  volume-title: Proc. NIPS
  ident: ref20
  article-title: Transformer in transformer
– ident: ref19
  doi: 10.1109/TSP.2021.3071210
– ident: ref12
  doi: 10.1109/MWC.013.2100642
– ident: ref17
  doi: 10.1109/TCSVT.2021.3082521
– ident: ref22
  doi: 10.1186/s40537-022-00652-w
– ident: ref3
  doi: 10.1109/ACCESS.2018.2879902
– year: 2022
  ident: ref36
  article-title: SSD: Towards better text-image consistency metric in text-to-image generation
  publication-title: arXiv:2210.15235
– ident: ref30
  doi: 10.1109/OCEANSE.2005.1511792
– ident: ref23
  doi: 10.1162/tacl_a_00477
– ident: ref27
  doi: 10.7763/IJFCC.2012.V1.95
– ident: ref7
  doi: 10.23919/JCC.2022.09.005
– volume: 21
  start-page: 1
  year: 2020
  ident: ref21
  article-title: Transfer learning
  publication-title: Learning
– ident: ref35
  doi: 10.1007/s11042-020-10035-z
– ident: ref13
  doi: 10.1109/COMST.2022.3223224
– ident: ref24
  doi: 10.1109/TCCN.2024.3424842
– ident: ref1
  doi: 10.1109/JIOT.2020.2993411
– ident: ref16
  doi: 10.1109/TCCN.2019.2919300
– ident: ref6
  doi: 10.1109/CECIT53797.2021.00088
– ident: ref28
  doi: 10.1109/IWCMC51323.2021.9498601
– ident: ref18
  doi: 10.1109/TWC.2023.3234408
– ident: ref29
  doi: 10.1109/ACCESS.2017.2771342
– ident: ref5
  doi: 10.1109/ICID52250.2020.00033
– ident: ref4
  doi: 10.1109/JIOT.2022.3219674
– ident: ref9
  doi: 10.1007/s11082-023-05721-9
– ident: ref2
  doi: 10.1080/00207217.2019.1692373
– year: 2007
  ident: ref32
  article-title: Rician-k factor study for temporal and spatial variations
– ident: ref33
  doi: 10.1002/mop.32202
– year: 2015
  ident: ref34
  article-title: Density modeling of images using a generalized normalization transformation
  publication-title: arXiv:1511.06281
– ident: ref8
  doi: 10.1007/s11082-024-07426-z
– volume: 48
  year: 2021
  ident: ref26
  article-title: A survey of maritime communications: From the wireless channel measurements and modeling perspective
  publication-title: Regional Stud. Mar. Sci.
  doi: 10.1016/j.rsma.2021.102031
SSID ssj0019757
Score 2.4444194
Snippet Maritime vessel networks face critical communication challenges due to severe signal attenuation induced by dynamic oceanic conditions, including vessel...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 42251
SubjectTerms Adaptation models
Communication
Computer architecture
Data exchange
Deep learning
Encoding
Feature extraction
Joint source–channel coding
marine communication
Maritime communications
maritime vessel networks
Multilayers
Networks
Reliability
Sea vessels
semantic
Semantic communication
Semantics
Sensors
Signal to noise ratio
Wireless communication
Title MDJSCC: Multiscale Feature Learning-Based Semantic Communications for Maritime Vessel Networks
URI https://ieeexplore.ieee.org/document/11187407
https://www.proquest.com/docview/3271985476
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS1wxEB6qFKwHW63SVVty8FSIJnl5-eHNbpUiuBTWlj35yCYTFeoqu26h_71JNrZK6aG3d3i_mC_zZuZNvm8A9lAjRoeaco6eyoiMpixDUJdilRChZU7FMmxCDwZmNLJfK1m9cGEQsWw-w_18WHr54dbP86-yA87LBDm9BEtaqwVZ63fLwOoi65k8mFHZ6FFtYXJmD06Hx4NUCop2vyn1j3gWhMpUlb8-xSW-nLz-zzd7A2s1kSRHC-TX4QVONmD1ibzgBqzUCedXv97Cxdnn02G_f0gK43aWkEGS07_5FEnVWL2kn1JIC2SIN8nc1548I4_MSEpvyZnLIkg3SL5nzfEfZLDYRT7bhG8nx-f9L7TOVqA-ZWD3tJFBGSckRmVkYCKKoLlw3jAvlVfeGRWSuwrbWusbPU6VD2_8mDsrddRtbLZgeXI7wXdAfHQ2auNxrFoprTAheBPTAzQLDfPjHnx8NHZ3t5DQ6ErpwWyXkekyMl1Fpgeb2bp_TqyG7cHuIz5d9bJZ1wjNrWmlVtv_uGwHXuW7Z_Igb3dh-X46x_fw0v9Mlp5-KAvoAdp7w4A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxQxEJ4gmIAPoAjxBLQPPpkU2m532_oGJwSR25gcmnty02unaiKHueNM_Pe2vaIS4gNv-7Cbbubr7Mzs9PsG4BUqxGBRUc7RURmQ0ZhlCGpjrBLC18w2IQ-bUG2rRyPzoZDVMxcGEfPhM9xPl7mX76_cPP0qO-A8T5BTD2ClllKwBV3rT9PAqCzsGX2YUVmpUWlicmYOzobHbSwGRb1f5QpI3ApDea7KnY9xjjAnG_d8t8ewXlJJcrjA_gks4WQTHv0jMLgJq2XG-ddfT-Hz4O3ZsN9_QzLndhaxQZISwPkUSVFZ_UKPYlDzZIiX0eDfHLlFH5mRmOCSgU0ySJdIPiXV8e-kXZwjn23Bx5Pji_4pLdMVqIs52DWtpG-0FRJDo6VnIgivuLBOMycb1zirGx8dVpjaGFepcax9eOXG3BqpgqpDtQ3Lk6sJPgPigjVBaYfjJuJihPbe6RAXUMxXzI178PrG2N2PhYhGl4sPZrqETJeQ6QoyPdhK1v17YzFsD3Zv8OmKn826SihudC1V8_w_j72E1dOLwXl3_q59vwNraaVEJeT1LixfT-e4Bw_dz2j16Yu8mX4DMenGxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDJSCC%3A+Multiscale+Feature+Learning-Based+Semantic+Communications+for+Maritime+Vessel+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Li%2C+Shibao&rft.au=Wang%2C+Xinkun&rft.au=Li%2C+Dongyang&rft.au=Wang%2C+Chongyang&rft.date=2025-11-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=22&rft.spage=42251&rft.epage=42264&rft_id=info:doi/10.1109%2FJSEN.2025.3614462&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon