Centralized MPC-Based Mixed-Integer Programming for Cooperative Trajectory Planning in Open-Pit Mines
The rapid evolution of artificial intelligence and Internet of Things (IoT) technology is making autonomous driving an emerging critical trend in open-pit mining operations. However, current systems still suffer from heavy reliance on manual safety interventions, as well as limitations in inertial c...
Uloženo v:
| Vydáno v: | IEEE internet of things journal Ročník 12; číslo 23; s. 51064 - 51076 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.12.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The rapid evolution of artificial intelligence and Internet of Things (IoT) technology is making autonomous driving an emerging critical trend in open-pit mining operations. However, current systems still suffer from heavy reliance on manual safety interventions, as well as limitations in inertial control of large vehicles and responses to uncertain environments. To address these issues, this study develops an autonomous driving planning framework based on model predictive control-mixed-integer programming (MPC-MIP). First, it defines three conflict modes for two key conflict areas in open-pit mines-intersections and overlapping sections. By encoding passage order with binary variables and integrating a collision detection algorithm via elliptical contour fitting, conflict resolution conditions are constructed. Second, leveraging a spatial-domain dynamic model and a discretized multivehicle path representation, an objective function for multivehicle cooperative trajectory planning is established, considering total passage time, speed limit loss, and motion smoothness. Conflict resolution conditions are embedded as constraints, forming an MIP model that optimizes both mining trucks' passage order and speed. Finally, an online solution method based on MPC is proposed, incorporating an integer constraint-freezing strategy for state evolution and an accelerated computing strategy to enable real-time multitruck cooperative trajectory planning. Simulations show that in a 12-truck scenario, compared with existing methods, this method has a 10.68% optimality loss rate and online planning time within 500 ms, enhancing efficiency and reducing complexity. Laboratory vehicle tests confirm 100% collision-free performance in typical loading cycle tasks, even with 5% positioning error interference. |
|---|---|
| AbstractList | The rapid evolution of artificial intelligence and Internet of Things (IoT) technology is making autonomous driving an emerging critical trend in open-pit mining operations. However, current systems still suffer from heavy reliance on manual safety interventions, as well as limitations in inertial control of large vehicles and responses to uncertain environments. To address these issues, this study develops an autonomous driving planning framework based on model predictive control-mixed-integer programming (MPC-MIP). First, it defines three conflict modes for two key conflict areas in open-pit mines-intersections and overlapping sections. By encoding passage order with binary variables and integrating a collision detection algorithm via elliptical contour fitting, conflict resolution conditions are constructed. Second, leveraging a spatial-domain dynamic model and a discretized multivehicle path representation, an objective function for multivehicle cooperative trajectory planning is established, considering total passage time, speed limit loss, and motion smoothness. Conflict resolution conditions are embedded as constraints, forming an MIP model that optimizes both mining trucks' passage order and speed. Finally, an online solution method based on MPC is proposed, incorporating an integer constraint-freezing strategy for state evolution and an accelerated computing strategy to enable real-time multitruck cooperative trajectory planning. Simulations show that in a 12-truck scenario, compared with existing methods, this method has a 10.68% optimality loss rate and online planning time within 500 ms, enhancing efficiency and reducing complexity. Laboratory vehicle tests confirm 100% collision-free performance in typical loading cycle tasks, even with 5% positioning error interference. |
| Author | Zhu, Desheng Huang, Zhipeng Wang, Chunhui Yang, Kehu Xiong, Yijin |
| Author_xml | – sequence: 1 givenname: Desheng orcidid: 0000-0001-6524-7600 surname: Zhu fullname: Zhu, Desheng organization: School of Artificial Intelligence, China University of Mining and Technology, Beijing, China – sequence: 2 givenname: Zhipeng surname: Huang fullname: Huang, Zhipeng organization: School of Artificial Intelligence, China University of Mining and Technology, Beijing, China – sequence: 3 givenname: Yijin orcidid: 0000-0002-9733-6875 surname: Xiong fullname: Xiong, Yijin organization: School of Vehicle and Mobility and the State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, China – sequence: 4 givenname: Chunhui orcidid: 0009-0004-3967-8799 surname: Wang fullname: Wang, Chunhui organization: School of Artificial Intelligence, China University of Mining and Technology, Beijing, China – sequence: 5 givenname: Kehu orcidid: 0000-0001-9163-2713 surname: Yang fullname: Yang, Kehu email: ykh@cumtb.edu.cn organization: School of Artificial Intelligence, China University of Mining and Technology, Beijing, China |
| BookMark | eNpNkF9LwzAUxYNMcM59AMGHgs-d-dNm3aMWp5PJ-jCfQ5LejowtqUknzk9vygb6dA_cc87l_q7RwDoLCN0SPCEEzx7eFqv1hGKaTxgn_bxAQ8roNM04p4N_-gqNQ9hijGMsJzM-RFCC7bzcmR-ok_eqTJ9k6JX5hjpd2A424JPKu42X-72xm6RxPimda8HLznxBsvZyC7pz_phUO2lt7zE2WbVg08p0sclCuEGXjdwFGJ_nCH3Mn9fla7pcvSzKx2WqCWddyohSGnLKGs50XUBWFMAUzupZrfFUZ03OFIcmi8tcNSCLTGFFVaFzWeQSMBuh-1Nv693nAUIntu7gbTwpIgIWv-YZjS5ycmnvQvDQiNabvfRHQbDogYoeqOhBijPQmLk7ZQwA_PkJmTJeEPYL2t10Tg |
| CODEN | IITJAU |
| Cites_doi | 10.1109/TIV.2022.3166564 10.1109/tits.2024.3483844 10.1109/itsc.2019.8917530 10.1109/jiot.2019.2939180 10.1109/tits.2019.2928969 10.1109/itsc.2018.8569922 10.1109/TSMC.2023.3283021 10.1109/tiv.2024.3494873 10.1109/andescon61840.2024.10755680 10.1109/itsc.2018.8569797 10.1109/tsmc.2023.3276218 10.1109/lra.2021.3068918 10.1109/ojits.2023.3336533 10.1109/tro.2024.3509015 10.1109/tvt.2023.3343703 10.1109/lra.2024.3402183 10.3390/s18072185 10.1016/j.robot.2022.104049 10.1109/jiot.2023.3342865 10.1109/jiot.2019.2948470 10.1109/TIV.2022.3214777 10.1109/cdc42340.2020.9304392 10.1109/tiv.2022.3197820 10.1109/tits.2024.3358380 10.1038/s44172-024-00220-5 10.1109/tim.2021.3083903 10.1109/tiv.2023.3312813 10.1109/tsmc.2024.3396139 10.1049/iet-its.2019.0334 10.1109/tiv.2021.3065867 10.1109/jiot.2023.3306572 10.1109/tits.2024.3383825 10.1109/tiv.2024.3375273 10.1109/JAS.2023.124182 10.1109/jiot.2023.3267828 10.1109/tiv.2021.3117840 10.1109/tnnls.2023.3247160 10.1109/jiot.2024.3408470 10.1109/tits.2019.2913589 10.1109/taes.2024.3411563 10.1109/iv51971.2022.9827077 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2025.3612025 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 51076 |
| ExternalDocumentID | 10_1109_JIOT_2025_3612025 11173681 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022YFB4703700 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD ABAZT JQ2 L7M L~C L~D M43 |
| ID | FETCH-LOGICAL-c163t-31bbce523f63cd8e488e3b04d9dc07c4f53b6ef43cd5bfea84b0b2b8c5a85ae03 |
| IEDL.DBID | RIE |
| ISSN | 2327-4662 |
| IngestDate | Thu Nov 20 15:51:24 EST 2025 Thu Nov 27 01:05:39 EST 2025 Wed Nov 26 07:22:49 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c163t-31bbce523f63cd8e488e3b04d9dc07c4f53b6ef43cd5bfea84b0b2b8c5a85ae03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9733-6875 0000-0001-9163-2713 0009-0004-3967-8799 0000-0001-6524-7600 |
| PQID | 3273110642 |
| PQPubID | 2040421 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_JIOT_2025_3612025 proquest_journals_3273110642 ieee_primary_11173681 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Dec.1,-1 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-Dec.1,-1 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 (ref6) 2025 ref1 ref17 ref39 ref16 ref38 (ref2) 2024 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 Chen (ref9) 2023; 48 ref41 ref22 ref44 ref21 ref43 (ref3) 2024 ref28 ref27 ref29 ref8 ref7 ref4 ref5 ref40 |
| References_xml | – ident: ref35 doi: 10.1109/TIV.2022.3166564 – ident: ref37 doi: 10.1109/tits.2024.3483844 – ident: ref41 doi: 10.1109/itsc.2019.8917530 – ident: ref40 doi: 10.1109/jiot.2019.2939180 – ident: ref15 doi: 10.1109/tits.2019.2928969 – ident: ref34 doi: 10.1109/itsc.2018.8569922 – ident: ref7 doi: 10.1109/TSMC.2023.3283021 – ident: ref27 doi: 10.1109/tiv.2024.3494873 – ident: ref21 doi: 10.1109/andescon61840.2024.10755680 – volume-title: Mine Injury and Worktime, Quarterly year: 2024 ident: ref3 – ident: ref39 doi: 10.1109/itsc.2018.8569797 – ident: ref14 doi: 10.1109/tsmc.2023.3276218 – ident: ref12 doi: 10.1109/lra.2021.3068918 – ident: ref25 doi: 10.1109/ojits.2023.3336533 – ident: ref32 doi: 10.1109/tro.2024.3509015 – ident: ref18 doi: 10.1109/tvt.2023.3343703 – ident: ref17 doi: 10.1109/lra.2024.3402183 – ident: ref11 doi: 10.3390/s18072185 – ident: ref38 doi: 10.1016/j.robot.2022.104049 – ident: ref42 doi: 10.1109/jiot.2023.3342865 – ident: ref30 doi: 10.1109/jiot.2019.2948470 – volume-title: Standard for Safety Management of Autonomous and Semi-Autonomous Systems-Interventions in the Event of Anomalous Behavior year: 2025 ident: ref6 – ident: ref23 doi: 10.1109/TIV.2022.3214777 – ident: ref33 doi: 10.1109/cdc42340.2020.9304392 – ident: ref4 doi: 10.1109/tiv.2022.3197820 – ident: ref13 doi: 10.1109/tits.2024.3358380 – ident: ref29 doi: 10.1038/s44172-024-00220-5 – ident: ref1 doi: 10.1109/tim.2021.3083903 – ident: ref19 doi: 10.1109/tiv.2023.3312813 – ident: ref8 doi: 10.1109/tsmc.2024.3396139 – ident: ref43 doi: 10.1049/iet-its.2019.0334 – ident: ref24 doi: 10.1109/tiv.2021.3065867 – ident: ref45 doi: 10.1109/jiot.2023.3306572 – volume: 48 start-page: 1782 issue: 4 year: 2023 ident: ref9 article-title: Driving risk assessment and prevention strategies for autonomous vehicle in open-pits publication-title: J. China Coal Soc. – ident: ref16 doi: 10.1109/tits.2024.3383825 – ident: ref26 doi: 10.1109/tiv.2024.3375273 – volume-title: Current Status of Safety Risks in High Steep Slopes of Non-Coal Open-Pit Mines and Advances in Monitoring and Early Warning Technologies year: 2024 ident: ref2 – ident: ref5 doi: 10.1109/JAS.2023.124182 – ident: ref31 doi: 10.1109/jiot.2023.3267828 – ident: ref10 doi: 10.1109/tiv.2021.3117840 – ident: ref20 doi: 10.1109/tnnls.2023.3247160 – ident: ref44 doi: 10.1109/jiot.2024.3408470 – ident: ref22 doi: 10.1109/tits.2019.2913589 – ident: ref36 doi: 10.1109/taes.2024.3411563 – ident: ref28 doi: 10.1109/iv51971.2022.9827077 |
| SSID | ssj0001105196 |
| Score | 2.3590627 |
| Snippet | The rapid evolution of artificial intelligence and Internet of Things (IoT) technology is making autonomous driving an emerging critical trend in open-pit... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 51064 |
| SubjectTerms | Accidents Artificial intelligence Autonomous mining vehicle Autonomous vehicles Collision avoidance Conflict resolution Constraints Data mining Driving Dynamic models Freezing Integer programming Internet of Things intersection management Linear programming Loading Mines Mixed integer model predictive control (MPC) nonlinear optimization method Open pit mining Pits (excavations) Planning Predictive control Real time Real-time systems Roads Safety Smoothness Speed limits Strategy Trajectory planning |
| Title | Centralized MPC-Based Mixed-Integer Programming for Cooperative Trajectory Planning in Open-Pit Mines |
| URI | https://ieeexplore.ieee.org/document/11173681 https://www.proquest.com/docview/3273110642 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8MwMOjwwRfnx8TplDz4JHTL1iZpHnU4VFD7oOBbaZKrVHAbuon6672kKQrig2-BXo9y1_u-yxFybKVNuYBhJApWRgkIlDkb84glRToaFhKdBuOXTcibm_ThQWVhWN3PwgCAbz6Dvjv6Wr6dmaVLlQ1QLmUs3KD1qpSiHtb6TqgMnTciQuVyyNTg6vL2DiPAEe_HaMeZ24b9w_b4ZSq_NLA3K5P2Pz9ok2wE_5Ge1gzfIisw3SbtZjcDDaK6QyCkbatPsPQ6G0dnaK7wVL2DjVwa8BGhs7o56xnNF0XnlY5nsznUV4FTNGJPPqP_QZvFRrSaUteAEmXVAjGhkuyQ-8n53fgiCisVIoOO1wI1rtYGMPgsRWxsCii-EGuWWGUNkyYpeawFlAk-5LqEIk000yOdGl6kvAAW75LWdDaFPUK5lGWhRiY1yhUDDQJKIxKtjOFKq6RLThpi5_P65ozcRxxM5Y4zueNIHjjTJR1H3W_AQNgu6TX8yYNwveYxulyIBiOn_T9eOyDrDmvddtIjrcXLEg7JmnlbVK8vR_6_-QLgVMMI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8MwMMgU9MX5MXF-5sEnoVu2Jm3zqMPh59zDBN9Kk1ylguvQTdRf7yXNmCA--BboJS13ve-7HCEnJjaJiKATRBnLAw4R8pwJRcB4lnQ7WYxGg3bDJuLBIHl8lEPfrO56YQDAFZ9Byy5dLt-UemZDZW3kyziMbKP1suDo-FTtWouQSsfaI5HPXXaYbF9f3Y_QB-yKVoianNl52D-0jxun8ksGO8XSr__zkzbIurcg6VlF8k2yBOMtUp9PZ6CeWbcJ-MBt8QWG3g17wTkqLFwVH2ACGwh8QuhhVZ71ggqMovlKe2U5geoycIpq7NnF9D_pfLQRLcbUlqAEw2KKJ6GYbJCH_sWodxn4oQqBRtNrijJXKQ3ofuZRqE0CyMAQKsaNNJrFmuciVBHkHB8KlUOWcMVUVyVaZInIgIU7pDYux7BLqIjjPJNdnWhp04EaAWMdcSW1FlJJ3iSnc2Snk-rujNT5HEymljKppUjqKdMkDYvdBaBHbJMczOmTevZ6S0M0uvAY9J32_th2TFYvR3e36e3V4GafrNk3VEUoB6Q2fZ3BIVnR79Pi7fXI_UPfLY_GTw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Centralized+MPC-Based+Mixed-Integer+Programming+for+Cooperative+Trajectory+Planning+in+Open-Pit+Mines&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhu%2C+Desheng&rft.au=Huang%2C+Zhipeng&rft.au=Xiong%2C+Yijin&rft.au=Wang%2C+Chunhui&rft.date=2025-12-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=12&rft.issue=23&rft.spage=51064&rft.epage=51076&rft_id=info:doi/10.1109%2FJIOT.2025.3612025&rft.externalDocID=11173681 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |