Centralized MPC-Based Mixed-Integer Programming for Cooperative Trajectory Planning in Open-Pit Mines

The rapid evolution of artificial intelligence and Internet of Things (IoT) technology is making autonomous driving an emerging critical trend in open-pit mining operations. However, current systems still suffer from heavy reliance on manual safety interventions, as well as limitations in inertial c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE internet of things journal Ročník 12; číslo 23; s. 51064 - 51076
Hlavní autoři: Zhu, Desheng, Huang, Zhipeng, Xiong, Yijin, Wang, Chunhui, Yang, Kehu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.12.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4662, 2327-4662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rapid evolution of artificial intelligence and Internet of Things (IoT) technology is making autonomous driving an emerging critical trend in open-pit mining operations. However, current systems still suffer from heavy reliance on manual safety interventions, as well as limitations in inertial control of large vehicles and responses to uncertain environments. To address these issues, this study develops an autonomous driving planning framework based on model predictive control-mixed-integer programming (MPC-MIP). First, it defines three conflict modes for two key conflict areas in open-pit mines-intersections and overlapping sections. By encoding passage order with binary variables and integrating a collision detection algorithm via elliptical contour fitting, conflict resolution conditions are constructed. Second, leveraging a spatial-domain dynamic model and a discretized multivehicle path representation, an objective function for multivehicle cooperative trajectory planning is established, considering total passage time, speed limit loss, and motion smoothness. Conflict resolution conditions are embedded as constraints, forming an MIP model that optimizes both mining trucks' passage order and speed. Finally, an online solution method based on MPC is proposed, incorporating an integer constraint-freezing strategy for state evolution and an accelerated computing strategy to enable real-time multitruck cooperative trajectory planning. Simulations show that in a 12-truck scenario, compared with existing methods, this method has a 10.68% optimality loss rate and online planning time within 500 ms, enhancing efficiency and reducing complexity. Laboratory vehicle tests confirm 100% collision-free performance in typical loading cycle tasks, even with 5% positioning error interference.
AbstractList The rapid evolution of artificial intelligence and Internet of Things (IoT) technology is making autonomous driving an emerging critical trend in open-pit mining operations. However, current systems still suffer from heavy reliance on manual safety interventions, as well as limitations in inertial control of large vehicles and responses to uncertain environments. To address these issues, this study develops an autonomous driving planning framework based on model predictive control-mixed-integer programming (MPC-MIP). First, it defines three conflict modes for two key conflict areas in open-pit mines-intersections and overlapping sections. By encoding passage order with binary variables and integrating a collision detection algorithm via elliptical contour fitting, conflict resolution conditions are constructed. Second, leveraging a spatial-domain dynamic model and a discretized multivehicle path representation, an objective function for multivehicle cooperative trajectory planning is established, considering total passage time, speed limit loss, and motion smoothness. Conflict resolution conditions are embedded as constraints, forming an MIP model that optimizes both mining trucks' passage order and speed. Finally, an online solution method based on MPC is proposed, incorporating an integer constraint-freezing strategy for state evolution and an accelerated computing strategy to enable real-time multitruck cooperative trajectory planning. Simulations show that in a 12-truck scenario, compared with existing methods, this method has a 10.68% optimality loss rate and online planning time within 500 ms, enhancing efficiency and reducing complexity. Laboratory vehicle tests confirm 100% collision-free performance in typical loading cycle tasks, even with 5% positioning error interference.
Author Zhu, Desheng
Huang, Zhipeng
Wang, Chunhui
Yang, Kehu
Xiong, Yijin
Author_xml – sequence: 1
  givenname: Desheng
  orcidid: 0000-0001-6524-7600
  surname: Zhu
  fullname: Zhu, Desheng
  organization: School of Artificial Intelligence, China University of Mining and Technology, Beijing, China
– sequence: 2
  givenname: Zhipeng
  surname: Huang
  fullname: Huang, Zhipeng
  organization: School of Artificial Intelligence, China University of Mining and Technology, Beijing, China
– sequence: 3
  givenname: Yijin
  orcidid: 0000-0002-9733-6875
  surname: Xiong
  fullname: Xiong, Yijin
  organization: School of Vehicle and Mobility and the State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Chunhui
  orcidid: 0009-0004-3967-8799
  surname: Wang
  fullname: Wang, Chunhui
  organization: School of Artificial Intelligence, China University of Mining and Technology, Beijing, China
– sequence: 5
  givenname: Kehu
  orcidid: 0000-0001-9163-2713
  surname: Yang
  fullname: Yang, Kehu
  email: ykh@cumtb.edu.cn
  organization: School of Artificial Intelligence, China University of Mining and Technology, Beijing, China
BookMark eNpNkF9LwzAUxYNMcM59AMGHgs-d-dNm3aMWp5PJ-jCfQ5LejowtqUknzk9vygb6dA_cc87l_q7RwDoLCN0SPCEEzx7eFqv1hGKaTxgn_bxAQ8roNM04p4N_-gqNQ9hijGMsJzM-RFCC7bzcmR-ok_eqTJ9k6JX5hjpd2A424JPKu42X-72xm6RxPimda8HLznxBsvZyC7pz_phUO2lt7zE2WbVg08p0sclCuEGXjdwFGJ_nCH3Mn9fla7pcvSzKx2WqCWddyohSGnLKGs50XUBWFMAUzupZrfFUZ03OFIcmi8tcNSCLTGFFVaFzWeQSMBuh-1Nv693nAUIntu7gbTwpIgIWv-YZjS5ycmnvQvDQiNabvfRHQbDogYoeqOhBijPQmLk7ZQwA_PkJmTJeEPYL2t10Tg
CODEN IITJAU
Cites_doi 10.1109/TIV.2022.3166564
10.1109/tits.2024.3483844
10.1109/itsc.2019.8917530
10.1109/jiot.2019.2939180
10.1109/tits.2019.2928969
10.1109/itsc.2018.8569922
10.1109/TSMC.2023.3283021
10.1109/tiv.2024.3494873
10.1109/andescon61840.2024.10755680
10.1109/itsc.2018.8569797
10.1109/tsmc.2023.3276218
10.1109/lra.2021.3068918
10.1109/ojits.2023.3336533
10.1109/tro.2024.3509015
10.1109/tvt.2023.3343703
10.1109/lra.2024.3402183
10.3390/s18072185
10.1016/j.robot.2022.104049
10.1109/jiot.2023.3342865
10.1109/jiot.2019.2948470
10.1109/TIV.2022.3214777
10.1109/cdc42340.2020.9304392
10.1109/tiv.2022.3197820
10.1109/tits.2024.3358380
10.1038/s44172-024-00220-5
10.1109/tim.2021.3083903
10.1109/tiv.2023.3312813
10.1109/tsmc.2024.3396139
10.1049/iet-its.2019.0334
10.1109/tiv.2021.3065867
10.1109/jiot.2023.3306572
10.1109/tits.2024.3383825
10.1109/tiv.2024.3375273
10.1109/JAS.2023.124182
10.1109/jiot.2023.3267828
10.1109/tiv.2021.3117840
10.1109/tnnls.2023.3247160
10.1109/jiot.2024.3408470
10.1109/tits.2019.2913589
10.1109/taes.2024.3411563
10.1109/iv51971.2022.9827077
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2025.3612025
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 51076
ExternalDocumentID 10_1109_JIOT_2025_3612025
11173681
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFB4703700
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
ABAZT
JQ2
L7M
L~C
L~D
M43
ID FETCH-LOGICAL-c163t-31bbce523f63cd8e488e3b04d9dc07c4f53b6ef43cd5bfea84b0b2b8c5a85ae03
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Thu Nov 20 15:51:24 EST 2025
Thu Nov 27 01:05:39 EST 2025
Wed Nov 26 07:22:49 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 23
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c163t-31bbce523f63cd8e488e3b04d9dc07c4f53b6ef43cd5bfea84b0b2b8c5a85ae03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9733-6875
0000-0001-9163-2713
0009-0004-3967-8799
0000-0001-6524-7600
PQID 3273110642
PQPubID 2040421
PageCount 13
ParticipantIDs crossref_primary_10_1109_JIOT_2025_3612025
proquest_journals_3273110642
ieee_primary_11173681
PublicationCentury 2000
PublicationDate 2025-Dec.1,-1
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-Dec.1,-1
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
(ref6) 2025
ref1
ref17
ref39
ref16
ref38
(ref2) 2024
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
Chen (ref9) 2023; 48
ref41
ref22
ref44
ref21
ref43
(ref3) 2024
ref28
ref27
ref29
ref8
ref7
ref4
ref5
ref40
References_xml – ident: ref35
  doi: 10.1109/TIV.2022.3166564
– ident: ref37
  doi: 10.1109/tits.2024.3483844
– ident: ref41
  doi: 10.1109/itsc.2019.8917530
– ident: ref40
  doi: 10.1109/jiot.2019.2939180
– ident: ref15
  doi: 10.1109/tits.2019.2928969
– ident: ref34
  doi: 10.1109/itsc.2018.8569922
– ident: ref7
  doi: 10.1109/TSMC.2023.3283021
– ident: ref27
  doi: 10.1109/tiv.2024.3494873
– ident: ref21
  doi: 10.1109/andescon61840.2024.10755680
– volume-title: Mine Injury and Worktime, Quarterly
  year: 2024
  ident: ref3
– ident: ref39
  doi: 10.1109/itsc.2018.8569797
– ident: ref14
  doi: 10.1109/tsmc.2023.3276218
– ident: ref12
  doi: 10.1109/lra.2021.3068918
– ident: ref25
  doi: 10.1109/ojits.2023.3336533
– ident: ref32
  doi: 10.1109/tro.2024.3509015
– ident: ref18
  doi: 10.1109/tvt.2023.3343703
– ident: ref17
  doi: 10.1109/lra.2024.3402183
– ident: ref11
  doi: 10.3390/s18072185
– ident: ref38
  doi: 10.1016/j.robot.2022.104049
– ident: ref42
  doi: 10.1109/jiot.2023.3342865
– ident: ref30
  doi: 10.1109/jiot.2019.2948470
– volume-title: Standard for Safety Management of Autonomous and Semi-Autonomous Systems-Interventions in the Event of Anomalous Behavior
  year: 2025
  ident: ref6
– ident: ref23
  doi: 10.1109/TIV.2022.3214777
– ident: ref33
  doi: 10.1109/cdc42340.2020.9304392
– ident: ref4
  doi: 10.1109/tiv.2022.3197820
– ident: ref13
  doi: 10.1109/tits.2024.3358380
– ident: ref29
  doi: 10.1038/s44172-024-00220-5
– ident: ref1
  doi: 10.1109/tim.2021.3083903
– ident: ref19
  doi: 10.1109/tiv.2023.3312813
– ident: ref8
  doi: 10.1109/tsmc.2024.3396139
– ident: ref43
  doi: 10.1049/iet-its.2019.0334
– ident: ref24
  doi: 10.1109/tiv.2021.3065867
– ident: ref45
  doi: 10.1109/jiot.2023.3306572
– volume: 48
  start-page: 1782
  issue: 4
  year: 2023
  ident: ref9
  article-title: Driving risk assessment and prevention strategies for autonomous vehicle in open-pits
  publication-title: J. China Coal Soc.
– ident: ref16
  doi: 10.1109/tits.2024.3383825
– ident: ref26
  doi: 10.1109/tiv.2024.3375273
– volume-title: Current Status of Safety Risks in High Steep Slopes of Non-Coal Open-Pit Mines and Advances in Monitoring and Early Warning Technologies
  year: 2024
  ident: ref2
– ident: ref5
  doi: 10.1109/JAS.2023.124182
– ident: ref31
  doi: 10.1109/jiot.2023.3267828
– ident: ref10
  doi: 10.1109/tiv.2021.3117840
– ident: ref20
  doi: 10.1109/tnnls.2023.3247160
– ident: ref44
  doi: 10.1109/jiot.2024.3408470
– ident: ref22
  doi: 10.1109/tits.2019.2913589
– ident: ref36
  doi: 10.1109/taes.2024.3411563
– ident: ref28
  doi: 10.1109/iv51971.2022.9827077
SSID ssj0001105196
Score 2.3590627
Snippet The rapid evolution of artificial intelligence and Internet of Things (IoT) technology is making autonomous driving an emerging critical trend in open-pit...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 51064
SubjectTerms Accidents
Artificial intelligence
Autonomous mining vehicle
Autonomous vehicles
Collision avoidance
Conflict resolution
Constraints
Data mining
Driving
Dynamic models
Freezing
Integer programming
Internet of Things
intersection management
Linear programming
Loading
Mines
Mixed integer
model predictive control (MPC)
nonlinear optimization method
Open pit mining
Pits (excavations)
Planning
Predictive control
Real time
Real-time systems
Roads
Safety
Smoothness
Speed limits
Strategy
Trajectory planning
Title Centralized MPC-Based Mixed-Integer Programming for Cooperative Trajectory Planning in Open-Pit Mines
URI https://ieeexplore.ieee.org/document/11173681
https://www.proquest.com/docview/3273110642
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8MwMOjwwRfnx8TplDz4JHTL1iZpHnU4VFD7oOBbaZKrVHAbuon6672kKQrig2-BXo9y1_u-yxFybKVNuYBhJApWRgkIlDkb84glRToaFhKdBuOXTcibm_ThQWVhWN3PwgCAbz6Dvjv6Wr6dmaVLlQ1QLmUs3KD1qpSiHtb6TqgMnTciQuVyyNTg6vL2DiPAEe_HaMeZ24b9w_b4ZSq_NLA3K5P2Pz9ok2wE_5Ge1gzfIisw3SbtZjcDDaK6QyCkbatPsPQ6G0dnaK7wVL2DjVwa8BGhs7o56xnNF0XnlY5nsznUV4FTNGJPPqP_QZvFRrSaUteAEmXVAjGhkuyQ-8n53fgiCisVIoOO1wI1rtYGMPgsRWxsCii-EGuWWGUNkyYpeawFlAk-5LqEIk000yOdGl6kvAAW75LWdDaFPUK5lGWhRiY1yhUDDQJKIxKtjOFKq6RLThpi5_P65ozcRxxM5Y4zueNIHjjTJR1H3W_AQNgu6TX8yYNwveYxulyIBiOn_T9eOyDrDmvddtIjrcXLEg7JmnlbVK8vR_6_-QLgVMMI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8MwMMgU9MX5MXF-5sEnoVu2Jm3zqMPh59zDBN9Kk1ylguvQTdRf7yXNmCA--BboJS13ve-7HCEnJjaJiKATRBnLAw4R8pwJRcB4lnQ7WYxGg3bDJuLBIHl8lEPfrO56YQDAFZ9Byy5dLt-UemZDZW3kyziMbKP1suDo-FTtWouQSsfaI5HPXXaYbF9f3Y_QB-yKVoianNl52D-0jxun8ksGO8XSr__zkzbIurcg6VlF8k2yBOMtUp9PZ6CeWbcJ-MBt8QWG3g17wTkqLFwVH2ACGwh8QuhhVZ71ggqMovlKe2U5geoycIpq7NnF9D_pfLQRLcbUlqAEw2KKJ6GYbJCH_sWodxn4oQqBRtNrijJXKQ3ofuZRqE0CyMAQKsaNNJrFmuciVBHkHB8KlUOWcMVUVyVaZInIgIU7pDYux7BLqIjjPJNdnWhp04EaAWMdcSW1FlJJ3iSnc2Snk-rujNT5HEymljKppUjqKdMkDYvdBaBHbJMczOmTevZ6S0M0uvAY9J32_th2TFYvR3e36e3V4GafrNk3VEUoB6Q2fZ3BIVnR79Pi7fXI_UPfLY_GTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Centralized+MPC-Based+Mixed-Integer+Programming+for+Cooperative+Trajectory+Planning+in+Open-Pit+Mines&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhu%2C+Desheng&rft.au=Huang%2C+Zhipeng&rft.au=Xiong%2C+Yijin&rft.au=Wang%2C+Chunhui&rft.date=2025-12-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=12&rft.issue=23&rft.spage=51064&rft.epage=51076&rft_id=info:doi/10.1109%2FJIOT.2025.3612025&rft.externalDocID=11173681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon