Machine Learning Techniques for Prediction of Parkinson’s Disease using Big Data

The growth of data in the healthcare industry grows exponentially and the annual growth rate is about 40%, managing this amount of data is challenging task. Big Data architecture and frameworks affords the platform for data storage and processing of massive volume of data in healthcare industry. The...

Full description

Saved in:
Bibliographic Details
Published in:International journal of innovative technology and exploring engineering Vol. 8; no. 10; pp. 3788 - 3791
Main Authors: Kanagaraj, S., Hema, Dr. M.S., Gupta, Dr. M. Nageswara
Format: Journal Article
Language:English
Published: 30.08.2019
ISSN:2278-3075, 2278-3075
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The growth of data in the healthcare industry grows exponentially and the annual growth rate is about 40%, managing this amount of data is challenging task. Big Data architecture and frameworks affords the platform for data storage and processing of massive volume of data in healthcare industry. The paper aims to provide Big Data technologies and Machine Learning algorithms to predict Parkinson’s Disease (PD). The dataset from PPMI are used in the current study and observe the progression of the Parkinson’s Disease. The Movement Disorder Society-Unified Parkinson’s Disease (MDS-UPDRS) features are used for the prediction model. The current study focuses on machine learning algorithms from python libraries such as pandas, ski-kit learn, numpy and matplotlib. The important features obtained are tremor, bradykinesia, facial expression is observed as important features for classification. It is observed that logistic regression and multi class classifier performed with accuracy of 99.04% than the other algorithms such as Naïve Bayes, k-Nearest Neighbor, SVM and Neural Network.
AbstractList The growth of data in the healthcare industry grows exponentially and the annual growth rate is about 40%, managing this amount of data is challenging task. Big Data architecture and frameworks affords the platform for data storage and processing of massive volume of data in healthcare industry. The paper aims to provide Big Data technologies and Machine Learning algorithms to predict Parkinson’s Disease (PD). The dataset from PPMI are used in the current study and observe the progression of the Parkinson’s Disease. The Movement Disorder Society-Unified Parkinson’s Disease (MDS-UPDRS) features are used for the prediction model. The current study focuses on machine learning algorithms from python libraries such as pandas, ski-kit learn, numpy and matplotlib. The important features obtained are tremor, bradykinesia, facial expression is observed as important features for classification. It is observed that logistic regression and multi class classifier performed with accuracy of 99.04% than the other algorithms such as Naïve Bayes, k-Nearest Neighbor, SVM and Neural Network.
Author Gupta, Dr. M. Nageswara
Hema, Dr. M.S.
Kanagaraj, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Kanagaraj
  fullname: Kanagaraj, S.
– sequence: 2
  givenname: Dr. M.S.
  surname: Hema
  fullname: Hema, Dr. M.S.
– sequence: 3
  givenname: Dr. M. Nageswara
  surname: Gupta
  fullname: Gupta, Dr. M. Nageswara
BookMark eNpN0EtOwzAUBVALFYlSugQkbyDBn6S2h9DyVRAVKuPIn-fWBRyw0wEztsH2WAnQdsDo3cm7ujrHaBC7CAidUlLyWlXkLKxDD1DeKSVESaSkhKoDNGRMyIITUQ_-5SM0znlNCKG8onKihujxXttViIAb0CmGuMQLsKsY3jeQse8Snidwwfahi7jzeK7Tc4i5i9-fXxnPQgadAW_y3-NFWOKZ7vUJOvT6JcN4f0fo6epyMb0pmofr2-l5U1g64apwxhjuHQDz3rHKEsIdkf53ltBWAndGW6MYN4x7KZSzVS1qRlmtHffeSD5C9a7Xpi7nBL59S-FVp4-WknZr0-5s2q1Nu7fhP875XV4
ContentType Journal Article
CorporateAuthor Department of Information Technology, Kumaraguru College of Technology, Coimbatore, India
Department of Computer Science and Engineering, Sri Venkateshwara College of Engineering, Bengaluru, India
Department of Computer Science and Engineering, Aurora’s Scientific Technological and Research Academy, Hyderabad, India
CorporateAuthor_xml – name: Department of Information Technology, Kumaraguru College of Technology, Coimbatore, India
– name: Department of Computer Science and Engineering, Aurora’s Scientific Technological and Research Academy, Hyderabad, India
– name: Department of Computer Science and Engineering, Sri Venkateshwara College of Engineering, Bengaluru, India
DBID AAYXX
CITATION
DOI 10.35940/ijitee.J9977.0881019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2278-3075
EndPage 3791
ExternalDocumentID 10_35940_ijitee_J9977_0881019
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
OK1
RNS
ID FETCH-LOGICAL-c1639-dbbb3fdee2ffd24c003d08f1867ac8e3dbacb923b23f879dc45752125ad3ffb83
ISSN 2278-3075
IngestDate Sat Nov 29 06:26:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1639-dbbb3fdee2ffd24c003d08f1867ac8e3dbacb923b23f879dc45752125ad3ffb83
OpenAccessLink https://doi.org/10.35940/ijitee.j9977.0881019
PageCount 4
ParticipantIDs crossref_primary_10_35940_ijitee_J9977_0881019
PublicationCentury 2000
PublicationDate 2019-08-30
PublicationDateYYYYMMDD 2019-08-30
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-30
  day: 30
PublicationDecade 2010
PublicationTitle International journal of innovative technology and exploring engineering
PublicationYear 2019
SSID ssj0001341869
Score 2.1215053
Snippet The growth of data in the healthcare industry grows exponentially and the annual growth rate is about 40%, managing this amount of data is challenging task....
SourceID crossref
SourceType Index Database
StartPage 3788
Title Machine Learning Techniques for Prediction of Parkinson’s Disease using Big Data
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2278-3075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001341869
  issn: 2278-3075
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwgEOiKdgecgHblVCNnEa-wiIhxBdIVjQ3iLbGVdFkK3StLsnxN_gL_Ez-CWM7Ty8qxViD1yiyFVGTefrzHgenwl5kuD_XyrYiwQUecRYoiPOTBLpIp1JKNClOLqmz--K_X1-eCjeTya_-lmY7deirvnJiVj9V1XjGirbjs5eQN2DUFzAe1Q6XlHteP0nxc9deyT0zKkLnz23NK2OesE2XVRL3QeKdurZD4B1XQ9ibRk5bdFmunF5hOfLBWKjlWEYezqPeIp9wh-yuoVpOyTtXYEChmY_GCkQB3Nvm3BkI10p6WM8Jmi_-XJUE0_n8bj-erNqgw_QRSxgfSwbGeYw7NgU78sxztTZeVybBfP1bThnrbPVPIRkEhheS4sfOPGs8GeAnXUQWS6YbalcfsGAHuK3AsPfGA0tGiYxesS-C-CMoxzaF3Hj5ASVXkzpxJSdmEvkclrkwlrY-fcg34fhAncnLA4v5gfKnKSn532hIFQKYp6DG-R6t1mhzzzIbpIJ1LfItYDC8jb50MGN9nCjI9wowo2OcKNHhg5w-_3j55p2QKMOaBSBRi3Q7pBPr14evHgTded0RBqjeRFVSqnMVACpMVXKNDqKKuHGUiVKzSGrlNQKNxIqzQwvRKUZ7hEwZMpllRmjeHaX7NRHNdwjVGMECugUZmIGTKo9IVOmMmaJ4nItktl9Evc_SbnydCzlX7Wxe9EHHpCrI0Ifkp222cAjckVv2-W6eex0-gexyIYc
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Techniques+for+Prediction+of+Parkinson%E2%80%99s+Disease+using+Big+Data&rft.jtitle=International+journal+of+innovative+technology+and+exploring+engineering&rft.au=Kanagaraj%2C+S.&rft.au=Hema%2C+Dr.+M.S.&rft.au=Gupta%2C+Dr.+M.+Nageswara&rft.date=2019-08-30&rft.issn=2278-3075&rft.eissn=2278-3075&rft.volume=8&rft.issue=10&rft.spage=3788&rft.epage=3791&rft_id=info:doi/10.35940%2Fijitee.J9977.0881019&rft.externalDBID=n%2Fa&rft.externalDocID=10_35940_ijitee_J9977_0881019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2278-3075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2278-3075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2278-3075&client=summon