UTILIZATION ROUGH CONCEPT TO SOLVE DE NOVO PROGRAMMING PROBLEM UNDER AMBIGUITY: REAL CASE STUDY

Multi-objective Linear Programming (MOLP) traditionally optimizes multiple conflicting objectives simultaneously. This research extends the De Novo Programming (DNP) concept, which focuses on optimal system design, to situations with uncertainty in resource allocation and budget constraints. A novel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanics of continua and mathematical sciences Vol. 20; no. 10
Main Authors: Hussein, Iftikhar Ali, Zahar, Hagazy, Saied, Naglaa Ragaa, Rabie, Rabie Mosaad
Format: Journal Article
Language:English
Published: 08.10.2025
ISSN:0973-8975, 2454-7190
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi-objective Linear Programming (MOLP) traditionally optimizes multiple conflicting objectives simultaneously. This research extends the De Novo Programming (DNP) concept, which focuses on optimal system design, to situations with uncertainty in resource allocation and budget constraints. A novel mathematical model, Rough Interval Multi-Objective De Novo Programming (RIMODNP), has been introduced. This model incorporates the Rough Interval (RI) concept, where all problem coefficients are represented by lower and upper interval bounds, each having two terms (upper and lower). The study outlines the mathematical formulation of the RIMODNP model, detailing the methodology used to transform its uncertain nature into deterministic sub-problems. It presents two primary approaches, Zeleny's and the Optimum-Path Ratio Method, for finding optimal designs. Applied to the Baghdad Water Department, the model optimizes resource allocation for increased water production, improved water quality, and reduced water loss while considering unknown constraints. The results, obtained by solving the deterministic sub-problems, provide the decision-maker with a range of optimal system designs. The application to the Baghdad Water Department shows significant increases in profit and cost savings across different scenarios, highlighting the model's ability to offer robust and effective solutions under conditions of uncertainty.
AbstractList Multi-objective Linear Programming (MOLP) traditionally optimizes multiple conflicting objectives simultaneously. This research extends the De Novo Programming (DNP) concept, which focuses on optimal system design, to situations with uncertainty in resource allocation and budget constraints. A novel mathematical model, Rough Interval Multi-Objective De Novo Programming (RIMODNP), has been introduced. This model incorporates the Rough Interval (RI) concept, where all problem coefficients are represented by lower and upper interval bounds, each having two terms (upper and lower). The study outlines the mathematical formulation of the RIMODNP model, detailing the methodology used to transform its uncertain nature into deterministic sub-problems. It presents two primary approaches, Zeleny's and the Optimum-Path Ratio Method, for finding optimal designs. Applied to the Baghdad Water Department, the model optimizes resource allocation for increased water production, improved water quality, and reduced water loss while considering unknown constraints. The results, obtained by solving the deterministic sub-problems, provide the decision-maker with a range of optimal system designs. The application to the Baghdad Water Department shows significant increases in profit and cost savings across different scenarios, highlighting the model's ability to offer robust and effective solutions under conditions of uncertainty.
Author Zahar, Hagazy
Saied, Naglaa Ragaa
Hussein, Iftikhar Ali
Rabie, Rabie Mosaad
Author_xml – sequence: 1
  givenname: Iftikhar Ali
  surname: Hussein
  fullname: Hussein, Iftikhar Ali
– sequence: 2
  givenname: Hagazy
  surname: Zahar
  fullname: Zahar, Hagazy
– sequence: 3
  givenname: Naglaa Ragaa
  surname: Saied
  fullname: Saied, Naglaa Ragaa
– sequence: 4
  givenname: Rabie Mosaad
  surname: Rabie
  fullname: Rabie, Rabie Mosaad
BookMark eNotkMtqwkAYhYdiodb6Bl3MC8TOLXPpLsZpHEgyEieC3YQkTqBStSQr377G9mzO4XD4-fmeweR8OXsAXjFaEC4keTue2tOwIIiEi1uHbhIPYEpYyAKBFZqAKVKCBlKJ8AnMh-F4W1CKKcdsCqrSmdR8Rs7YHBa2TNYwtnmsNw46C7c23Wm40jC3Ows3hU2KKMtMnox5meoMlvlKFzDKliYpjdu_w0JHKYyjrYZbV672L-Cxq78HP__3GSg_tIvXQWoTE0dp0GJORUAbxSQ6NKSTKGwwa70Q45uhQPKAvFS1b5RvOA877hXGRPFWtqiuJaOU15jOAPu72_aXYeh9V_30X6e6v1YYVXdO1Z1TNXIauzsn-guozVWQ
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.26782/jmcms.2025.10.00007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2454-7190
ExternalDocumentID 10_26782_jmcms_2025_10_00007
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c1637-3b9480db2f805b14ce7700035708d0e89aeb9eb665f6e911296c8c0aa84336a13
ISSN 0973-8975
IngestDate Sat Oct 25 05:31:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1637-3b9480db2f805b14ce7700035708d0e89aeb9eb665f6e911296c8c0aa84336a13
OpenAccessLink https://doi.org/10.26782/jmcms.2025.10.00007
ParticipantIDs crossref_primary_10_26782_jmcms_2025_10_00007
PublicationCentury 2000
PublicationDate 2025-10-08
PublicationDateYYYYMMDD 2025-10-08
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-08
  day: 08
PublicationDecade 2020
PublicationTitle Journal of mechanics of continua and mathematical sciences
PublicationYear 2025
SSID ssj0003313614
Score 2.305626
Snippet Multi-objective Linear Programming (MOLP) traditionally optimizes multiple conflicting objectives simultaneously. This research extends the De Novo Programming...
SourceID crossref
SourceType Index Database
Title UTILIZATION ROUGH CONCEPT TO SOLVE DE NOVO PROGRAMMING PROBLEM UNDER AMBIGUITY: REAL CASE STUDY
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2454-7190
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003313614
  issn: 0973-8975
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1FhQMXBAIEFNAeuK1c1uv12svNTU1iKYmrxKkKF2ttr9VAE6p8VP2F_C72w3ENKogeuFirTTJy_J484_HMGwDeCyI9LHHhcJ9wh8qKO4VbC4cK6RLmuYxZpEfBZBKen_PTXu_Hvhfm-jJYrcKbG371X6FWewps3Tp7D7hbo2pDrRXo6qhgV8d_An6eJaPki52mM03ngyHqp5N-fJqhLEWzdHQWo5MYTdKzVF3-dDCNxmOdsVLr41E8RqbrAEXj42QwT7LPpmAujkaoH81iEz_-KZ5dSt1ErEWfTaW6nkCxMw1faNlKw-47MMvbysXhbrNpBm4m9Xbx7UKsUXS5aBPa4sKWgA-1Enab_5-Jhc3SToSK_wWaqk9bBzMVhX3rYhbqtrURouqmN4hv6-u6ecrAc0Jux6scSbNHqK-LSO2c0f1tnOAuXfFd7oEoz6z1Zr8uy6WWaif-kansw3bw7q9q3L95ybZ2UT01GTu5sZJrK7mrNVaNqMEDEvjc7Tza64jA81yPWZn5_b-xXZzG0Ic7TqcTJXXCnewJeNzgCiPLr6egJ1fPQN7hFjTcgg23YJZCwy14EkPNLdjhFmy4BQ23YMutj1AzC2pmQcOs52D-Kc76Q6eZ0OGUKo5X3qngNMRVQeoQ-4VLSxkE5uV0gMMKy5ALWXBZMObXTHId2rMyLLEQIfU8JlzvBThYfV_JlwDWjGLheyocLwgtRal-G1Be1phWNAgr9go4-yuSX1khlvxvULy-5_cPwaNb-r0BB9v1Tr4FD8vr7WKzfmfw_AlSAnFZ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UTILIZATION+ROUGH+CONCEPT+TO+SOLVE+DE+NOVO+PROGRAMMING+PROBLEM+UNDER+AMBIGUITY%3A+REAL+CASE+STUDY&rft.jtitle=Journal+of+mechanics+of+continua+and+mathematical+sciences&rft.au=Hussein%2C+Iftikhar+Ali&rft.au=Zahar%2C+Hagazy&rft.au=Saied%2C+Naglaa+Ragaa&rft.au=Rabie%2C+Rabie+Mosaad&rft.date=2025-10-08&rft.issn=0973-8975&rft.eissn=2454-7190&rft.volume=20&rft.issue=10&rft_id=info:doi/10.26782%2Fjmcms.2025.10.00007&rft.externalDBID=n%2Fa&rft.externalDocID=10_26782_jmcms_2025_10_00007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-8975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-8975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-8975&client=summon