Mathematical programming with Semilocally Subconvex functions over cones

In this paper, we introduce another generalization of semilocally convex functions over cones, called conesemilocallysubconvex function (C-slsb), and compare it with other generalizations of convex functions through examples.Further, using its properties we establish a theorem of the alternatives fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics, optimization & information computing Ročník 14; číslo 3; s. 1473 - 1480
Hlavní autoři: Sharma, Vani, Chaudhary, Mamta, Grover, Meetu Bhatia
Médium: Journal Article
Jazyk:angličtina
Vydáno: 02.09.2025
ISSN:2311-004X, 2310-5070
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we introduce another generalization of semilocally convex functions over cones, called conesemilocallysubconvex function (C-slsb), and compare it with other generalizations of convex functions through examples.Further, using its properties we establish a theorem of the alternatives for these functions. Then we investigate the optimalsolutions of the mathematical programming problem (MP) over cones using these functions, directional derivatives, andthe alternative theorem. Investigation of optimal solutions of (MP) is done by deriving optimality and duality results forsemilocally subconvex mathematical programming problems over cones (MP).
ISSN:2311-004X
2310-5070
DOI:10.19139/soic-2310-5070-2502