A Survey on Label-Efficient Deep Image Segmentation: Bridging the Gap Between Weak Supervision and Dense Prediction
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 45; číslo 8; s. 9284 - 9305 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.08.2023
|
| ISSN: | 0162-8828, 2160-9292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Author | Yang, Xiaokang Peng, Zelin Tian, Qi Shen, Wei Xie, Lingxi Jiang, Dongsheng Wang, Huayu Cen, Jiazhong Wang, Xuehui |
|---|---|
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-1235-598X surname: Shen fullname: Shen, Wei organization: MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Zelin surname: Peng fullname: Peng, Zelin organization: MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Xuehui orcidid: 0000-0002-6333-7773 surname: Wang fullname: Wang, Xuehui organization: MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Huayu surname: Wang fullname: Wang, Huayu organization: MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Jiazhong orcidid: 0000-0002-2165-6418 surname: Cen fullname: Cen, Jiazhong organization: MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China – sequence: 6 givenname: Dongsheng surname: Jiang fullname: Jiang, Dongsheng organization: Huawei Inc., Shenzhen, Guangdong, China – sequence: 7 givenname: Lingxi orcidid: 0000-0003-4831-9451 surname: Xie fullname: Xie, Lingxi organization: Huawei Inc., Shenzhen, Guangdong, China – sequence: 8 givenname: Xiaokang orcidid: 0000-0003-4029-3322 surname: Yang fullname: Yang, Xiaokang organization: MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China – sequence: 9 givenname: Qi orcidid: 0000-0002-7252-5047 surname: Tian fullname: Tian, Qi organization: Huawei Inc., Shenzhen, Guangdong, China |
| BookMark | eNp9kE1PwkAQhjcGEwH9A572DxRntx9svQEiNsFIAsZjsy2zdRW2zW7F8O_dCicPniaZzPPmnWdAeqY2SMgtgxFjkN5tVpPnbMSBh6OQRwkDfkH6nCUQpDzlPdIHlvBACC6uyMC5DwAWxRD2iZvQ9Zc94JHWhi5lgbtgrpQuNZqWPiA2NNvLCukaq71fyVbX5p5Ord5W2lS0fUe6kA2dYvuNaOgbyk8f2KA9aOdPqTRbH2Mc0pXFrS47_ppcKrlzeHOeQ_L6ON_MnoLlyyKbTZZB6cu2AYpQKJTMt5YSWBhHkEQSSjlGIceAjHMRFwJC_ycKBVwUKk1SxcYQFx0wJPyUW9raOYsqb6zeS3vMGeSdtvxXW95py8_aPCT-QKU-vd1aqXf_oT-QbHP2 |
| CitedBy_id | crossref_primary_10_1109_JBHI_2024_3385098 crossref_primary_10_1007_s00371_024_03623_9 crossref_primary_10_1016_j_inffus_2024_102311 crossref_primary_10_1007_s00371_024_03373_8 crossref_primary_10_3390_math12162520 crossref_primary_10_1016_j_aei_2025_103254 crossref_primary_10_1109_TIFS_2025_3571665 crossref_primary_10_1016_j_rse_2024_114274 crossref_primary_10_1016_j_media_2024_103183 crossref_primary_10_1016_j_media_2025_103745 crossref_primary_10_3390_rs17050808 crossref_primary_10_1016_j_compscitech_2024_110713 crossref_primary_10_1016_j_patcog_2024_110492 crossref_primary_10_1109_TMI_2024_3508738 crossref_primary_10_1016_j_compmedimag_2024_102438 crossref_primary_10_1016_j_eswa_2025_127497 crossref_primary_10_1016_j_neucom_2025_130293 crossref_primary_10_1109_TGRS_2023_3330479 crossref_primary_10_1007_s00371_025_03843_7 crossref_primary_10_1016_j_eswa_2024_123564 crossref_primary_10_1038_s41598_025_12969_6 crossref_primary_10_1016_j_neunet_2024_106581 crossref_primary_10_1016_j_rse_2023_113779 crossref_primary_10_1109_ACCESS_2024_3484430 crossref_primary_10_3390_rs16050804 crossref_primary_10_3390_s25010225 crossref_primary_10_1016_j_inffus_2025_103590 crossref_primary_10_1016_j_imavis_2024_105149 crossref_primary_10_1016_j_imavis_2025_105527 crossref_primary_10_1016_j_neucom_2025_129589 crossref_primary_10_1109_TGRS_2024_3373908 crossref_primary_10_1109_TGRS_2025_3559901 crossref_primary_10_1016_j_compag_2023_108412 crossref_primary_10_1016_j_engappai_2025_111325 crossref_primary_10_1016_j_neunet_2025_107215 crossref_primary_10_1109_TIP_2025_3573509 crossref_primary_10_1016_j_media_2024_103329 crossref_primary_10_1109_TCSVT_2024_3515088 crossref_primary_10_1007_s11517_024_03195_9 crossref_primary_10_3390_s24030997 crossref_primary_10_1109_LRA_2024_3505779 crossref_primary_10_3390_rs16030526 crossref_primary_10_1109_TGRS_2023_3323926 crossref_primary_10_1109_ACCESS_2025_3572013 crossref_primary_10_1145_3707447 crossref_primary_10_1016_j_measurement_2025_118610 crossref_primary_10_1109_TCYB_2024_3403729 crossref_primary_10_3390_atmos14121813 crossref_primary_10_1109_TPAMI_2025_3557047 crossref_primary_10_1080_17538947_2025_2491108 crossref_primary_10_1007_s11263_025_02421_7 crossref_primary_10_1002_tee_70014 crossref_primary_10_3390_ijms26157134 crossref_primary_10_1016_j_engappai_2025_111100 crossref_primary_10_1109_TPAMI_2025_3566593 crossref_primary_10_1109_TPAMI_2024_3416302 crossref_primary_10_1109_LSP_2023_3343945 crossref_primary_10_1016_j_ultrasmedbio_2025_05_026 |
| Cites_doi | 10.1007/s11263-022-01653-1 10.1080/24709360.2019.1670513 10.5555/3295222.3295309 10.1109/ICCV.2015.164 10.1109/CVPR46437.2021.00265 10.1007/978-3-319-10602-1_48 10.1109/TPAMI.2018.2858821 10.1109/CVPR.2018.00780 10.1109/CVPR.2019.00262 10.1109/ICCV.2017.322 10.1007/978-3-030-58536-5_21 10.1109/CVPR.2018.00445 10.1109/ICCV48922.2021.00690 10.1007/978-3-031-20056-4_29 10.1109/CVPR.2015.7298965 10.1109/WACV48630.2021.00106 10.1145/3400066 10.1109/CVPR.2019.00231 10.1007/978-3-030-58571-6_9 10.1109/CVPR.2019.00323 10.5555/2969033.2969125 10.1109/ICCV48922.2021.00689 10.1109/CVPR.2018.00473 10.1109/ICCV48922.2021.00692 10.1109/CVPR52688.2022.01553 10.1109/CVPR.2018.00399 10.1109/CVPR.2019.00541 10.1145/3474085.3475675 10.1109/CVPR.2017.472 10.1109/WACV48630.2021.00142 10.48550/arXiv.1802.02611 10.1109/CVPR46437.2021.01641 10.1109/CVPR.2016.352 10.1007/978-3-031-20077-9_21 10.1109/ICCV48922.2021.00990 10.1007/s10462-019-09792-7 10.1007/978-3-319-24574-4_28 10.1109/ICCV.2015.191 10.1109/CVPR46437.2021.00304 10.1007/978-3-319-10584-0_20 10.48550/ARXIV.1412.7062 10.1109/TNN.2008.2005605 10.1109/CVPR.2016.319 10.1109/ICCV48922.2021.00868 10.1007/978-3-319-46493-0_42 10.1109/ICCV48922.2021.00895 10.1109/ICCV48922.2021.00060 10.1109/CVPR.2018.00913 10.1109/CVPR.2018.00733 10.1023/A:1011174803800 10.1109/ICCV48922.2021.00685 10.1109/CVPR.2017.687 10.1109/CVPR42600.2020.00431 10.1109/TPAMI.2004.60 10.1109/CVPR52688.2022.00426 10.1109/CVPR46437.2021.01223 10.1109/CVPR52688.2022.01129 10.1109/CVPR52688.2022.00969 10.1109/ICCV48922.2021.00675 10.1109/TPAMI.2015.2389824 10.1609/aaai.v35i2.16269 10.1109/CVPR42600.2020.00901 10.1109/ICCV.2019.00344 10.1007/978-3-319-46475-6_7 10.1109/CVPR.2017.660 10.1109/CVPR52688.2022.00444 10.1109/ITW.2015.7133169 10.1109/TPAMI.2006.233 10.1109/CVPR.2017.315 10.1109/ICCV.2019.00743 10.1109/34.295913 10.1109/TPAMI.2016.2644615 10.1109/ICCV48922.2021.00951 10.1609/aaai.v35i3.16294 10.1109/ICCV48922.2021.01507 10.1109/CVPR.2019.00325 10.1007/978-3-030-58601-0_26 10.1109/CVPR.2017.181 10.1145/1015706.1015720 10.1007/978-3-030-58523-5_38 10.1609/aaai.v34i07.6971 10.1109/CVPR.2017.563 10.1109/CVPR46437.2021.01642 10.1007/978-3-030-01267-0_7 10.1007/978-3-030-58598-3_23 10.1109/ICCV.2019.00612 10.1109/CVPR52688.2022.01634 10.1109/CVPR46437.2021.00540 10.1109/ICCV.2019.00996 10.1109/ICCV48922.2021.00719 10.1109/ICCV48922.2021.00715 10.1109/CVPR.2018.00132 10.1109/CVPR42600.2020.01032 10.1109/ICCV48922.2021.00282 10.1609/aaai.v36i2.20034 10.1007/978-3-030-01219-9_18 10.5555/3495724.3497510 10.1109/ICCV48922.2021.00693 10.1109/CVPR42600.2020.00975 10.1109/ICCV.2017.74 10.1109/CVPR52688.2022.00427 10.1109/ICCV.2019.00930 10.1109/WACV.2018.00097 10.1109/CVPR46437.2021.00267 10.1109/CVPR46437.2021.00264 10.1109/TIP.2022.3144036 10.1109/ICCV48922.2021.00718 10.1109/CVPR52688.2022.01131 10.1109/TPAMI.2017.2699184 10.1109/ICCV48922.2021.00809 10.1109/CVPR52688.2022.01638 10.1109/CVPR.2018.00523 10.1145/3394171.3413593 10.1007/s11263-013-0620-5 10.1109/CVPR46437.2021.00684 10.1007/978-3-030-58583-9_18 10.1109/CVPR46437.2021.00681 10.1109/CVPR.2018.00759 10.1109/CVPR.2018.00144 10.1109/CVPR.2019.00326 10.1109/CVPR42600.2020.01299 10.1007/s11263-020-01293-3 10.48550/ARXIV.1706.03762 10.1109/ICCV48922.2021.00717 10.1109/CVPR46437.2021.00406 10.1109/ICCV.2019.00925 10.1007/978-1-4899-7502-7_79-1 10.1007/978-3-030-01270-0_31 10.1109/CVPR42600.2020.01229 10.1109/CVPR46437.2021.01549 10.1109/34.868688 10.1007/s11263-021-01465-9 10.1007/s11263-014-0733-5 10.5555/3524938.3525087 10.1109/CVPR.2016.344 10.1109/CVPR52688.2022.01378 10.1109/CVPR.2019.00976 10.1109/CVPR.2014.49 10.1109/CVPR52688.2022.01760 10.1109/CVPR.2019.00963 10.1109/CVPR.2019.00710 10.1109/CVPR.2018.00195 10.1109/ICCV.2003.1238308 10.1109/CVPR42600.2020.00434 10.1609/aaai.v34i07.6705 10.1109/TPAMI.2016.2537320 10.1109/CVPR.2016.350 10.48550/arXiv.2010.11929 10.1109/CVPR.2017.326 10.1109/CVPR46437.2021.01009 10.1109/CVPR.2018.00147 10.1109/CVPR52688.2022.00263 10.1109/CVPR46437.2021.01652 10.1109/CVPR46437.2021.00126 10.1109/ICCV.2019.00216 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1109/TPAMI.2023.3246102 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 |
| EndPage | 9305 |
| ExternalDocumentID | 10_1109_TPAMI_2023_3246102 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AASAJ AAWTH AAYXX ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 ~02 |
| ID | FETCH-LOGICAL-c162t-e838fea1882aa01354064a0ca7e8a70e12285b803216e8f028bf969f1705ba013 |
| ISSN | 0162-8828 |
| IngestDate | Tue Nov 18 21:24:08 EST 2025 Sat Nov 29 02:58:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c162t-e838fea1882aa01354064a0ca7e8a70e12285b803216e8f028bf969f1705ba013 |
| ORCID | 0000-0002-6333-7773 0000-0003-4831-9451 0000-0002-2165-6418 0000-0002-7252-5047 0000-0003-4029-3322 0000-0002-1235-598X |
| PageCount | 22 |
| ParticipantIDs | crossref_primary_10_1109_TPAMI_2023_3246102 crossref_citationtrail_10_1109_TPAMI_2023_3246102 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-8-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-8-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationYear | 2023 |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref168 ref54 ref169 Bao (ref177) ref178 ref51 Xie (ref174) ref176 ref173 ref172 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Zou (ref30) ref49 ref8 ref180 ref181 ref4 ref3 ref6 ref5 Lee (ref90) ref100 ref101 ref40 ref186 ref184 Hsu (ref39) ref182 ref183 ref35 ref34 ref37 ref36 ref31 ref148 ref33 ref146 ref32 ref147 ref38 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref23 Laradji (ref115) ref26 ref25 Radford (ref158) ref20 French (ref137) ref159 ref22 ref157 ref21 Yu (ref171) ref28 ref27 ref29 ref166 Chen (ref9) 2017 ref167 ref164 ref165 Hou (ref46) ref163 ref161 Li (ref162) ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 Hamilton (ref24) ref93 ref133 ref134 ref131 ref132 ref130 ref91 ref89 ref139 ref86 ref85 ref138 ref88 ref135 ref87 ref136 Zhang (ref78) Pan (ref149) Han (ref170) Pinheiro (ref74) Srivastava (ref94) 2014; 15 ref82 ref144 ref81 ref145 Yuan (ref175) ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 Caron (ref72) ref109 Bucher (ref160) Tarvainen (ref185) ref106 ref107 ref75 ref104 ref105 ref77 ref102 ref76 ref103 ref1 Zhou (ref179) Hung (ref50) Yu (ref7) Krähenbühl (ref2) ref71 ref111 ref70 ref112 ref73 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref63 ref116 ref66 ref113 ref65 ref114 Saxe (ref95) Zhang (ref92) ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
| References_xml | – ident: ref159 doi: 10.1007/s11263-022-01653-1 – ident: ref97 doi: 10.1080/24709360.2019.1670513 – ident: ref156 doi: 10.5555/3295222.3295309 – ident: ref133 doi: 10.1109/ICCV.2015.164 – ident: ref182 doi: 10.1109/CVPR46437.2021.00265 – start-page: 466 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref160 article-title: Zero-shot semantic segmentation – ident: ref62 doi: 10.1007/978-3-319-10602-1_48 – ident: ref186 doi: 10.1109/TPAMI.2018.2858821 – ident: ref143 doi: 10.1109/CVPR.2018.00780 – start-page: 1 volume-title: Proc. Brit. Mach. Vis. Conf. ident: ref50 article-title: Adversarial learning for semi-supervised semantic segmentation – ident: ref152 doi: 10.1109/CVPR.2019.00262 – ident: ref12 doi: 10.1109/ICCV.2017.322 – ident: ref104 doi: 10.1007/978-3-030-58536-5_21 – ident: ref32 doi: 10.1109/CVPR.2018.00445 – ident: ref101 doi: 10.1109/ICCV48922.2021.00690 – ident: ref77 doi: 10.1007/978-3-031-20056-4_29 – ident: ref20 doi: 10.1109/CVPR.2015.7298965 – ident: ref117 doi: 10.1109/WACV48630.2021.00106 – ident: ref22 doi: 10.1145/3400066 – ident: ref49 doi: 10.1109/CVPR.2019.00231 – ident: ref64 doi: 10.1007/978-3-030-58571-6_9 – ident: ref116 doi: 10.1109/CVPR.2019.00323 – ident: ref151 doi: 10.5555/2969033.2969125 – ident: ref163 doi: 10.1109/ICCV48922.2021.00689 – ident: ref144 doi: 10.1109/CVPR.2018.00473 – ident: ref93 doi: 10.1109/ICCV48922.2021.00692 – ident: ref178 doi: 10.1109/CVPR52688.2022.01553 – ident: ref34 doi: 10.1109/CVPR.2018.00399 – ident: ref85 doi: 10.1109/CVPR.2019.00541 – ident: ref110 doi: 10.1145/3474085.3475675 – ident: ref11 doi: 10.1109/CVPR.2017.472 – ident: ref51 doi: 10.1109/WACV48630.2021.00142 – ident: ref10 doi: 10.48550/arXiv.1802.02611 – ident: ref76 doi: 10.1109/CVPR46437.2021.01641 – ident: ref61 doi: 10.1109/CVPR.2016.352 – ident: ref122 doi: 10.1007/978-3-031-20077-9_21 – start-page: 1195 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref185 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results – ident: ref23 doi: 10.1109/ICCV48922.2021.00990 – ident: ref21 doi: 10.1007/s10462-019-09792-7 – ident: ref5 doi: 10.1007/978-3-319-24574-4_28 – ident: ref54 doi: 10.1109/ICCV.2015.191 – ident: ref75 doi: 10.1109/CVPR46437.2021.00304 – ident: ref3 doi: 10.1007/978-3-319-10584-0_20 – ident: ref6 doi: 10.48550/ARXIV.1412.7062 – ident: ref105 doi: 10.1109/TNN.2008.2005605 – ident: ref81 doi: 10.1109/CVPR.2016.319 – ident: ref150 doi: 10.1109/ICCV48922.2021.00868 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref24 article-title: Unsupervised semantic segmentation by distilling feature correspondences – ident: ref107 doi: 10.1007/978-3-319-46493-0_42 – ident: ref145 doi: 10.1109/ICCV48922.2021.00895 – ident: ref169 doi: 10.1109/ICCV48922.2021.00060 – ident: ref14 doi: 10.1109/CVPR.2018.00913 – ident: ref108 doi: 10.1109/CVPR.2018.00733 – ident: ref71 doi: 10.1023/A:1011174803800 – ident: ref135 doi: 10.1109/ICCV48922.2021.00685 – ident: ref86 doi: 10.1109/CVPR.2017.687 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref94 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref183 doi: 10.1109/CVPR42600.2020.00431 – ident: ref130 doi: 10.1109/TPAMI.2004.60 – ident: ref106 doi: 10.1109/CVPR52688.2022.00426 – ident: ref42 doi: 10.1109/CVPR46437.2021.01223 – ident: ref165 doi: 10.1109/CVPR52688.2022.01129 – ident: ref146 doi: 10.1109/CVPR52688.2022.00969 – ident: ref168 doi: 10.1109/ICCV48922.2021.00675 – ident: ref119 doi: 10.1109/TPAMI.2015.2389824 – ident: ref100 doi: 10.1609/aaai.v35i2.16269 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref30 article-title: PseudoSeg: Designing pseudo labels for semantic segmentation – ident: ref91 doi: 10.1109/CVPR42600.2020.00901 – ident: ref35 doi: 10.1109/ICCV.2019.00344 – ident: ref60 doi: 10.1007/978-3-319-46475-6_7 – start-page: 1 volume-title: Proc. Brit. Mach. Vis. Conf. ident: ref115 article-title: Where are the masks: Instance segmentation with image-level supervision – start-page: 7281 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref175 article-title: HRFormer: High-resolution vision transformer for dense predict – ident: ref13 doi: 10.1109/CVPR.2017.660 – ident: ref181 doi: 10.1109/CVPR52688.2022.00444 – ident: ref96 doi: 10.1109/ITW.2015.7133169 – ident: ref113 doi: 10.1109/TPAMI.2006.233 – start-page: 532 volume-title: Proc. Eur. Conf. Comput. Vis. ident: ref149 article-title: Two-phase pseudo label densification for self-training based domain adaptation – ident: ref132 doi: 10.1109/CVPR.2017.315 – start-page: 12992 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref171 article-title: Glance-and-gaze vision transformer – ident: ref43 doi: 10.1109/ICCV.2019.00743 – ident: ref111 doi: 10.1109/34.295913 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref162 article-title: Language-driven semantic segmentation – ident: ref139 doi: 10.1109/ICCV.2017.322 – ident: ref15 doi: 10.1109/TPAMI.2016.2644615 – ident: ref176 doi: 10.1109/ICCV48922.2021.00951 – ident: ref47 doi: 10.1609/aaai.v35i3.16294 – ident: ref131 doi: 10.1109/ICCV48922.2021.01507 – start-page: 655 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref92 article-title: Causal intervention for weakly-supervised semantic segmentation – ident: ref125 doi: 10.1109/CVPR.2019.00325 – ident: ref136 doi: 10.1007/978-3-030-58601-0_26 – start-page: 3285 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref78 article-title: Looking beyond single images for contrastive semantic segmentation learning – ident: ref38 doi: 10.1109/CVPR.2017.181 – ident: ref1 doi: 10.1145/1015706.1015720 – ident: ref18 doi: 10.1007/978-3-030-58523-5_38 – ident: ref56 doi: 10.1609/aaai.v34i07.6971 – ident: ref99 doi: 10.1109/CVPR.2017.563 – ident: ref29 doi: 10.1109/CVPR46437.2021.01642 – ident: ref40 doi: 10.1007/978-3-030-01267-0_7 – start-page: 395 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref74 article-title: Unsupervised learning of dense visual representations – ident: ref141 doi: 10.1007/978-3-030-58598-3_23 – ident: ref154 doi: 10.1109/ICCV.2019.00612 – ident: ref114 doi: 10.1109/CVPR52688.2022.01634 – ident: ref80 doi: 10.1109/CVPR46437.2021.00540 – ident: ref44 doi: 10.1109/ICCV.2019.00996 – start-page: 9912 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref72 article-title: Unsupervised learning of visual features by contrasting cluster assignments – ident: ref88 doi: 10.1109/ICCV48922.2021.00719 – ident: ref102 doi: 10.1109/ICCV48922.2021.00715 – ident: ref63 doi: 10.1109/CVPR.2018.00132 – year: 2017 ident: ref9 article-title: Rethinking atrous convolution for semantic image segmentation – ident: ref33 doi: 10.1109/CVPR42600.2020.01032 – ident: ref140 doi: 10.1109/ICCV48922.2021.00282 – ident: ref155 doi: 10.1609/aaai.v36i2.20034 – ident: ref147 doi: 10.1007/978-3-030-01219-9_18 – ident: ref69 doi: 10.5555/3495724.3497510 – ident: ref142 doi: 10.1109/ICCV48922.2021.00693 – ident: ref67 doi: 10.1109/CVPR42600.2020.00975 – ident: ref82 doi: 10.1109/ICCV.2017.74 – start-page: 12077 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref174 article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers – ident: ref180 doi: 10.1109/CVPR52688.2022.00427 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref179 article-title: iBOT: Image bert pre-training with online tokenizer – ident: ref53 doi: 10.1109/ICCV.2019.00930 – ident: ref70 doi: 10.1109/ICCV.2015.164 – ident: ref83 doi: 10.1109/WACV.2018.00097 – ident: ref127 doi: 10.1109/CVPR46437.2021.00267 – start-page: 27408 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref90 article-title: Reducing information bottleneck for weakly supervised semantic segmentation – ident: ref57 doi: 10.1109/CVPR46437.2021.00264 – ident: ref134 doi: 10.1109/TIP.2022.3144036 – ident: ref138 doi: 10.1109/ICCV48922.2021.00718 – ident: ref52 doi: 10.1109/CVPR52688.2022.01131 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref177 article-title: BEiT: Bert pre-training of image transformers – ident: ref8 doi: 10.1109/TPAMI.2017.2699184 – ident: ref120 doi: 10.1109/ICCV48922.2021.00809 – ident: ref103 doi: 10.1109/CVPR52688.2022.01638 – ident: ref26 doi: 10.1109/CVPR.2018.00523 – ident: ref161 doi: 10.1145/3394171.3413593 – ident: ref121 doi: 10.1007/s11263-013-0620-5 – ident: ref37 doi: 10.1109/CVPR46437.2021.00684 – ident: ref126 doi: 10.1007/978-3-030-58583-9_18 – ident: ref172 doi: 10.1109/CVPR46437.2021.00681 – ident: ref45 doi: 10.1109/CVPR.2018.00759 – ident: ref87 doi: 10.1109/CVPR.2018.00144 – ident: ref17 doi: 10.1109/CVPR.2019.00326 – ident: ref148 doi: 10.1109/CVPR42600.2020.01299 – ident: ref98 doi: 10.1007/s11263-020-01293-3 – ident: ref166 doi: 10.48550/ARXIV.1706.03762 – ident: ref173 doi: 10.1109/ICCV48922.2021.00717 – ident: ref89 doi: 10.1109/CVPR46437.2021.00406 – ident: ref16 doi: 10.1109/ICCV.2019.00925 – ident: ref153 doi: 10.1007/978-1-4899-7502-7_79-1 – ident: ref55 doi: 10.1007/978-3-030-01270-0_31 – ident: ref27 doi: 10.1109/CVPR42600.2020.01229 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref95 article-title: On the information bottleneck theory of deep learning – start-page: 109 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref2 article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials – start-page: 15908 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref170 article-title: Transformer in transformer – ident: ref73 doi: 10.1109/CVPR46437.2021.01549 – start-page: 6582 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref39 article-title: Weakly supervised instance segmentation using the bounding box tightness prior – ident: ref66 doi: 10.1109/34.868688 – ident: ref19 doi: 10.1007/s11263-021-01465-9 – start-page: 1 volume-title: Proc. Brit. Mach. Vis. Conf. ident: ref137 article-title: Semi-supervised semantic segmentation needs strong, high-dimensional perturbations – ident: ref58 doi: 10.1007/s11263-014-0733-5 – ident: ref68 doi: 10.5555/3524938.3525087 – ident: ref36 doi: 10.1109/CVPR.2016.344 – ident: ref79 doi: 10.1109/CVPR52688.2022.01378 – ident: ref157 doi: 10.1109/CVPR.2019.00976 – ident: ref123 doi: 10.1109/CVPR.2014.49 – ident: ref164 doi: 10.1109/CVPR52688.2022.01760 – start-page: 547 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref46 article-title: Self-erasing network for integral object attention – ident: ref4 doi: 10.1109/CVPR.2019.00963 – ident: ref25 doi: 10.1109/CVPR52688.2022.01378 – ident: ref41 doi: 10.1109/CVPR.2019.00710 – ident: ref112 doi: 10.1109/CVPR.2018.00195 – ident: ref129 doi: 10.1109/ICCV.2003.1238308 – ident: ref184 doi: 10.1109/CVPR42600.2020.00434 – ident: ref48 doi: 10.1609/aaai.v34i07.6705 – ident: ref124 doi: 10.1109/TPAMI.2016.2537320 – start-page: 8748 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref158 article-title: Learning transferable visual models from natural language supervision – ident: ref59 doi: 10.1109/CVPR.2016.350 – ident: ref167 doi: 10.48550/arXiv.2010.11929 – ident: ref118 doi: 10.1109/CVPR.2017.326 – ident: ref128 doi: 10.1109/CVPR46437.2021.01009 – ident: ref109 doi: 10.1109/CVPR.2018.00147 – ident: ref28 doi: 10.1109/CVPR52688.2022.00263 – ident: ref65 doi: 10.1109/CVPR46437.2021.01652 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref7 article-title: Multi-scale context aggregation by dilated convolutions – ident: ref31 doi: 10.1109/CVPR46437.2021.00126 – ident: ref84 doi: 10.1109/ICCV.2019.00216 |
| SSID | ssj0014503 |
| Score | 2.5954344 |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 9284 |
| Title | A Survey on Label-Efficient Deep Image Segmentation: Bridging the Gap Between Weak Supervision and Dense Prediction |
| Volume | 45 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwgEOPAoVBYr2wC1y8du73FJoaaVSVSLQiIu1tscQkbhWEkflr_JrmFmvH4SH6IHLKlp5J7bn8-zO7sw3jL2IRBC5mfAsO8fGz8C20LPFDy8F4eW4Ys50SZaPp9HZmZhM5Plg8L3JhVnPoqIQV1ey_K-qxj5UNqXOXkPdrVDswN-odGxR7dj-k-JHaAwWa_zUUa-nKoGZdahpIujQ_w1AOTyZU5zOe_g8N3lHOrjjgDK3mtypt6ocHpgIrgtQX1FkSUZl2QUvF0ug-I1smraqNWtc8h-p9ERTh1wfSJSax5MGGxIUkjLXkZygOSsaXtB2y8ekjVzAtDPftWH6RDn03UlA3Tmp4Es13ew9rtS3qr-z4XptXF272RkiaIRJHgfd5zohosmVP1nwmpDSIFX0zLF06_pzZmqXnk7x_s20oVlXx-ejdyf7dCf7HtHs2W43STaBARtzZxvRqH0pW8ZaRkwyYiPjBrvpRoGUdW5he8LlB7pqd_uMTUKXLV_-eh-9RVNv9TO-z-4at4WParg9YAMottm9piQINzPENrvT47d8yJYjXmORXxZ8A4ucsMg1Fnkfi694g0SOSOSIRG6QyAmJvIdEjhjiGom8Q-Ij9uHocPz62DJVPqwUn31loU0QOSgHX4JS6JCgCxH6yk5VBEJFNjiuK4JE2B6qHkSO6-Ekl6HMiQcqoQE7bKu4LOAx48S67svIDYmXTwqhhB944CRZkuKfBPkuc5rXGKeGAp8qscziP6tvlw3bMWVNAPOXq59c6-qn7HaH-2dsa7WoYI_dSter6XLxXOPlB_rtpEg |
| linkProvider | IEEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Label-Efficient+Deep+Image+Segmentation%3A+Bridging+the+Gap+Between+Weak+Supervision+and+Dense+Prediction&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Shen%2C+Wei&rft.au=Peng%2C+Zelin&rft.au=Wang%2C+Xuehui&rft.au=Wang%2C+Huayu&rft.date=2023-08-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=45&rft.issue=8&rft.spage=9284&rft.epage=9305&rft_id=info:doi/10.1109%2FTPAMI.2023.3246102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2023_3246102 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |