Contrastive Attention-Based Network for Self-Supervised Point Cloud Completion
Point cloud completion aims to reconstruct complete 3D shapes from partial observations, often requiring multiple views or complete data for training. In this paper, we propose an attention-driven, self-supervised autoencoder network that completes 3D point clouds from a single partial observation....
Uloženo v:
| Vydáno v: | IEEE signal processing letters Ročník 32; s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1070-9908, 1558-2361 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Point cloud completion aims to reconstruct complete 3D shapes from partial observations, often requiring multiple views or complete data for training. In this paper, we propose an attention-driven, self-supervised autoencoder network that completes 3D point clouds from a single partial observation. Multi-head self-attention captures robust contextual relationships, while residual connections in the autoencoder enhance geometric feature learning. In addition to this, we incorporate a contrastive learning-based loss, which encourages the network to better distinguish structural patterns even in highly incomplete observations. Experimental results on benchmark datasets demonstrate that the proposed approach achieves state-of-the-art performance in single-view point cloud completion. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1070-9908 1558-2361 |
| DOI: | 10.1109/LSP.2025.3631424 |