Contrastive Attention-Based Network for Self-Supervised Point Cloud Completion

Point cloud completion aims to reconstruct complete 3D shapes from partial observations, often requiring multiple views or complete data for training. In this paper, we propose an attention-driven, self-supervised autoencoder network that completes 3D point clouds from a single partial observation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters Jg. 32; S. 4444 - 4448
Hauptverfasser: Kumari, Seema, Kumar, Preyum, Mandal, Srimanta, Raman, Shanmuganathan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1070-9908, 1558-2361
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!