Functional requirements for guided bone regeneration/guided tissue regeneration membrane design: Progress and challenges
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) membranes are critical for reconstructing periodontal/bone defects, but existing membranes face limitations in osteogenic potential, antibacterial efficacy, degradation kinetics, mechanical stability, and immunomodulation within the...
Uloženo v:
| Vydáno v: | Periodontology 2000 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Denmark
12.11.2025
|
| Témata: | |
| ISSN: | 0906-6713, 1600-0757, 1600-0757 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Guided tissue regeneration (GTR) and guided bone regeneration (GBR) membranes are critical for reconstructing periodontal/bone defects, but existing membranes face limitations in osteogenic potential, antibacterial efficacy, degradation kinetics, mechanical stability, and immunomodulation within the complex oral microenvironment. This review aims to explore cellular interactions between alveolar bone regenerative cells and GBR/GTR membranes, membrane design strategies based on biological functions, and advancements in material engineering to overcome current clinical challenges. A comprehensive search strategy was implemented across PubMed, Scopus, Web of Science databases, as well as clinical trials registers. Data pertinent to membrane synthetic methodology, biological behavior, tissue regeneration outcomes were retrieved from the original studies. A qualitative assessment was performed. Overall, ideal GBR/GTR membranes must meet several functional requirements: (i) Clinical necessities include biocompatibility, selective permeability for nutrient exchange, and clinical operability. GTR aims to create and maintain a stable isolated space to protect blood clots, thereby enabling blood clots and the newly formed tissue to effectively block the migration of epithelial cells. GBR demands rigid space maintenance to resist mucosal compression in edentulous ridges, with greater emphasis on mechanical stability for large bone defects. Degradation kinetics must align with slower bone formation (3–6 months). (ii) Appropriate surface properties (roughness, morphology, stiffness, wettability, charge) and porosity/pore size are critical for cell behavior. (iii) Membrane‐based biological regulation can promote cell adhesion and migration, and balance osteoclastogenesis and osteogenesis. Optimization strategies include incorporating bioactive substances for bone regeneration, immunomodulatory agents for anti‐inflammatory responses, and antibacterial additives for clinical performance. GBR/GTR membranes require multifunctional integration of barrier functionality, tailored biodegradation, mechanical robustness, and proactive bioactivity (osteogenic, angiogenic, immunomodulatory, and antibacterial). Future designs must prioritize understanding cell‐material interactions to develop membranes that dynamically synchronize with the regenerative microenvironment. This review provides a foundation for developing next‐generation membranes that effectively address complex oral microenvironment challenges and significantly improve clinical outcomes in bone defect reconstruction. Optimized membranes will enhance space maintenance, reduce infection rates, mitigate premature degradation, and improve predictability in reconstructing periodontal and alveolar bone defects, ultimately advancing regenerative outcomes in implant dentistry and periodontal surgery. |
|---|---|
| AbstractList | Guided tissue regeneration (GTR) and guided bone regeneration (GBR) membranes are critical for reconstructing periodontal/bone defects, but existing membranes face limitations in osteogenic potential, antibacterial efficacy, degradation kinetics, mechanical stability, and immunomodulation within the complex oral microenvironment. This review aims to explore cellular interactions between alveolar bone regenerative cells and GBR/GTR membranes, membrane design strategies based on biological functions, and advancements in material engineering to overcome current clinical challenges. A comprehensive search strategy was implemented across PubMed, Scopus, Web of Science databases, as well as clinical trials registers. Data pertinent to membrane synthetic methodology, biological behavior, tissue regeneration outcomes were retrieved from the original studies. A qualitative assessment was performed. Overall, ideal GBR/GTR membranes must meet several functional requirements: (i) Clinical necessities include biocompatibility, selective permeability for nutrient exchange, and clinical operability. GTR aims to create and maintain a stable isolated space to protect blood clots, thereby enabling blood clots and the newly formed tissue to effectively block the migration of epithelial cells. GBR demands rigid space maintenance to resist mucosal compression in edentulous ridges, with greater emphasis on mechanical stability for large bone defects. Degradation kinetics must align with slower bone formation (3-6 months). (ii) Appropriate surface properties (roughness, morphology, stiffness, wettability, charge) and porosity/pore size are critical for cell behavior. (iii) Membrane-based biological regulation can promote cell adhesion and migration, and balance osteoclastogenesis and osteogenesis. Optimization strategies include incorporating bioactive substances for bone regeneration, immunomodulatory agents for anti-inflammatory responses, and antibacterial additives for clinical performance. GBR/GTR membranes require multifunctional integration of barrier functionality, tailored biodegradation, mechanical robustness, and proactive bioactivity (osteogenic, angiogenic, immunomodulatory, and antibacterial). Future designs must prioritize understanding cell-material interactions to develop membranes that dynamically synchronize with the regenerative microenvironment. This review provides a foundation for developing next-generation membranes that effectively address complex oral microenvironment challenges and significantly improve clinical outcomes in bone defect reconstruction. Optimized membranes will enhance space maintenance, reduce infection rates, mitigate premature degradation, and improve predictability in reconstructing periodontal and alveolar bone defects, ultimately advancing regenerative outcomes in implant dentistry and periodontal surgery. Guided tissue regeneration (GTR) and guided bone regeneration (GBR) membranes are critical for reconstructing periodontal/bone defects, but existing membranes face limitations in osteogenic potential, antibacterial efficacy, degradation kinetics, mechanical stability, and immunomodulation within the complex oral microenvironment. This review aims to explore cellular interactions between alveolar bone regenerative cells and GBR/GTR membranes, membrane design strategies based on biological functions, and advancements in material engineering to overcome current clinical challenges. A comprehensive search strategy was implemented across PubMed, Scopus, Web of Science databases, as well as clinical trials registers. Data pertinent to membrane synthetic methodology, biological behavior, tissue regeneration outcomes were retrieved from the original studies. A qualitative assessment was performed. Overall, ideal GBR/GTR membranes must meet several functional requirements: (i) Clinical necessities include biocompatibility, selective permeability for nutrient exchange, and clinical operability. GTR aims to create and maintain a stable isolated space to protect blood clots, thereby enabling blood clots and the newly formed tissue to effectively block the migration of epithelial cells. GBR demands rigid space maintenance to resist mucosal compression in edentulous ridges, with greater emphasis on mechanical stability for large bone defects. Degradation kinetics must align with slower bone formation (3-6 months). (ii) Appropriate surface properties (roughness, morphology, stiffness, wettability, charge) and porosity/pore size are critical for cell behavior. (iii) Membrane-based biological regulation can promote cell adhesion and migration, and balance osteoclastogenesis and osteogenesis. Optimization strategies include incorporating bioactive substances for bone regeneration, immunomodulatory agents for anti-inflammatory responses, and antibacterial additives for clinical performance. GBR/GTR membranes require multifunctional integration of barrier functionality, tailored biodegradation, mechanical robustness, and proactive bioactivity (osteogenic, angiogenic, immunomodulatory, and antibacterial). Future designs must prioritize understanding cell-material interactions to develop membranes that dynamically synchronize with the regenerative microenvironment. This review provides a foundation for developing next-generation membranes that effectively address complex oral microenvironment challenges and significantly improve clinical outcomes in bone defect reconstruction. Optimized membranes will enhance space maintenance, reduce infection rates, mitigate premature degradation, and improve predictability in reconstructing periodontal and alveolar bone defects, ultimately advancing regenerative outcomes in implant dentistry and periodontal surgery.Guided tissue regeneration (GTR) and guided bone regeneration (GBR) membranes are critical for reconstructing periodontal/bone defects, but existing membranes face limitations in osteogenic potential, antibacterial efficacy, degradation kinetics, mechanical stability, and immunomodulation within the complex oral microenvironment. This review aims to explore cellular interactions between alveolar bone regenerative cells and GBR/GTR membranes, membrane design strategies based on biological functions, and advancements in material engineering to overcome current clinical challenges. A comprehensive search strategy was implemented across PubMed, Scopus, Web of Science databases, as well as clinical trials registers. Data pertinent to membrane synthetic methodology, biological behavior, tissue regeneration outcomes were retrieved from the original studies. A qualitative assessment was performed. Overall, ideal GBR/GTR membranes must meet several functional requirements: (i) Clinical necessities include biocompatibility, selective permeability for nutrient exchange, and clinical operability. GTR aims to create and maintain a stable isolated space to protect blood clots, thereby enabling blood clots and the newly formed tissue to effectively block the migration of epithelial cells. GBR demands rigid space maintenance to resist mucosal compression in edentulous ridges, with greater emphasis on mechanical stability for large bone defects. Degradation kinetics must align with slower bone formation (3-6 months). (ii) Appropriate surface properties (roughness, morphology, stiffness, wettability, charge) and porosity/pore size are critical for cell behavior. (iii) Membrane-based biological regulation can promote cell adhesion and migration, and balance osteoclastogenesis and osteogenesis. Optimization strategies include incorporating bioactive substances for bone regeneration, immunomodulatory agents for anti-inflammatory responses, and antibacterial additives for clinical performance. GBR/GTR membranes require multifunctional integration of barrier functionality, tailored biodegradation, mechanical robustness, and proactive bioactivity (osteogenic, angiogenic, immunomodulatory, and antibacterial). Future designs must prioritize understanding cell-material interactions to develop membranes that dynamically synchronize with the regenerative microenvironment. This review provides a foundation for developing next-generation membranes that effectively address complex oral microenvironment challenges and significantly improve clinical outcomes in bone defect reconstruction. Optimized membranes will enhance space maintenance, reduce infection rates, mitigate premature degradation, and improve predictability in reconstructing periodontal and alveolar bone defects, ultimately advancing regenerative outcomes in implant dentistry and periodontal surgery. |
| Author | Zhan, Huilu Yuan, Changyong Miron, Richard J. Lin, Kaili Li, Haiyan Shi, Ruijianghan Sculean, Anton Ni, Haohao |
| Author_xml | – sequence: 1 givenname: Huilu surname: Zhan fullname: Zhan, Huilu organization: Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Department of Stomatology, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai China – sequence: 2 givenname: Ruijianghan surname: Shi fullname: Shi, Ruijianghan organization: Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China – sequence: 3 givenname: Haohao surname: Ni fullname: Ni, Haohao organization: The First School of Clinical Medicine Zhejiang Chinese Medical University Hangzhou China – sequence: 4 givenname: Haiyan surname: Li fullname: Li, Haiyan organization: Biomedical Engineering Department, School of Engineering, STEM College RMIT University Melbourne Victoria Australia – sequence: 5 givenname: Changyong surname: Yuan fullname: Yuan, Changyong organization: School of Stomatology, Xuzhou Medical University Affiliated Stomatological Hospital of Xuzhou Medical University Xuzhou China – sequence: 6 givenname: Kaili orcidid: 0000-0002-1900-9641 surname: Lin fullname: Lin, Kaili organization: Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China – sequence: 7 givenname: Anton orcidid: 0000-0003-2836-5477 surname: Sculean fullname: Sculean, Anton organization: Department of Periodontology University of Bern Bern Switzerland – sequence: 8 givenname: Richard J. orcidid: 0000-0003-3290-3418 surname: Miron fullname: Miron, Richard J. organization: Department of Periodontology University of Bern Bern Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41221631$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVkctOwzAQRS1URB-w4AeQl7BIa8epnbBDFQWkSrCAdeTHOAQlTmsnEvw9Li1IzGY0umcemjtFI9c5QOiSkjmNsdh6MxeE0OIETSgnJCFiKUZoQgrCEy4oG6NpCB-REAVbnqFxRtOUckYn6HM9ON3XnZMN9rAbag8tuD5g23lcDbUBg1XcFsUKHHi5ZxdHoa9DGP5LuIVWeRkbDIS6crf4xXeVhxCwdAbrd9k04CoI5-jUyibAxTHP0Nv6_nX1mGyeH55Wd5tEU572CSNKU5FlkGuqheK5TVmmiNRcGZYasEaIQjCRF1rl2lidC0UNz0GBsBaAzdD1Ye7Wd7sBQl-2ddDQNPHGbgglSwUlOSfxSzN0dUQH1YIpt75upf8qf78VgZsDoH0Xggf7h1BS7p2ItSl_nGDf36t-lQ |
| Cites_doi | 10.1038/s41392-023-01452-1 10.1111/j.1365-2567.2006.02538.x 10.1016/j.msec.2020.111787 10.1016/j.mattod.2015.11.004 10.1016/j.cej.2023.143015 10.1089/ten.tec.2022.0106 10.1002/jbm.a.32747 10.3390/ma11030400 10.1016/j.mtbio.2024.101430 10.1007/s10266-008-0087-y 10.1002/adma.202310697 10.1021/acs.biomac.3c01148 10.1016/j.ijbiomac.2024.137954 10.1021/nn506255e 10.1111/cbdd.13959 10.1021/acsbiomaterials.4c00420 10.1016/j.colsurfb.2024.114117 10.13172/2052-7837-1-1-451 10.1016/j.identj.2023.07.008 10.1002/advs.202307606 10.1016/j.msec.2020.111307 10.1186/s12903-019-0717-5 10.1016/j.nxmate.2025.100561 10.1016/j.intimp.2024.112151 10.1002/advs.202206981 10.1016/j.biomaterials.2010.01.034 10.1034/j.1600-0501.1999.100508.x 10.1097/00006534-198805000-00004 10.1016/j.actbio.2021.02.012 10.1002/JPER.20-0055 10.1016/j.dental.2012.04.022 10.3390/ijms23095142 10.1002/smll.202006598 10.1002/adfm.202412695 10.1002/advs.202305756 10.1038/s41413-022-00190-4 10.1111/prd.12474 10.1111/prd.12002 10.1111/jcpe.13855 10.1111/clr.12213 10.3390/cells13131090 10.1021/acsbiomaterials.6b00357 10.1016/j.redox.2024.103451 10.1016/j.ejcb.2020.151123 10.1021/acsnano.3c12403 10.1039/D3TB01407J 10.1038/s41467-024-53290-6 10.1038/s41413-024-00326-8 10.1039/D3FO04627C 10.4049/jimmunol.1600540 10.1016/j.actbio.2016.11.028 10.1902/jop.2007.060356 10.1016/j.apmt.2024.102332 10.1016/j.cej.2024.154433 10.1016/j.dental.2019.03.011 10.1111/j.1600-051X.1982.tb02095.x 10.1038/s41536-023-00305-3 10.1021/acsnano.4c05677 10.1177/00220345231151921 10.1111/j.1600-051X.2004.00590.x 10.1902/jop.1997.68.7.667 10.1002/adhm.202000707 10.1038/s41467-023-43476-9 10.1111/j.1600-0501.2011.02375.x 10.1111/jre.12498 10.1016/j.bioadv.2024.213892 10.1016/j.jdent.2019.103259 10.1126/science.1116995 10.1088/1468-6996/14/4/044401 10.1038/s41368-022-00195-z 10.1111/prd.12537 10.1111/jcpe.12851 10.1021/acsami.5b06128 10.1002/jbm.b.35060 10.1111/prd.12502 10.1111/prd.12518 10.1016/j.reth.2019.12.011 10.1038/s41467-024-48417-8 10.1016/j.colsurfb.2022.112760 10.1007/s42765-024-00457-x 10.1016/j.matt.2019.05.021 10.1002/app.54313 10.3390/membranes12040378 10.1016/j.actbio.2020.03.044 10.1080/14686996.2023.2186690 10.1016/j.foodres.2025.116490 10.1016/j.cell.2006.06.044 10.1016/0142-9612(96)86739-1 10.1016/j.msec.2015.09.021 10.1016/j.cden.2021.08.003 10.1002/dvg.23490 10.1016/j.matdes.2023.111671 10.22203/eCM.v038a06 10.1016/j.ijbiomac.2023.126085 10.3389/fchem.2020.595530 10.1038/s12276-022-00899-6 10.1039/C7TB00485K 10.1016/j.jddst.2021.102583 10.1111/jcpe.13258 10.1038/ki.2010.418 10.1016/j.compositesb.2024.112019 10.3389/fbioe.2021.781268 10.1111/prd.12323 10.1039/C2BM00032F 10.1002/pen.23329 10.1515/epoly-2021-0021 10.1021/acsnano.6b07808 10.1016/j.ijbiomac.2024.134148 10.1186/1741-7015-10-81 10.1111/prd.12598 10.1021/acsami.2c08400 10.1111/idj.12630 10.1093/nsr/nwad333 10.1038/s41577-021-00557-4 10.1016/j.msec.2019.01.083 10.1016/j.compscitech.2014.03.004 10.1021/acs.analchem.2c04222 10.1002/jbm.b.33430 10.3390/ma14123319 10.1016/j.cell.2013.10.054 10.1016/j.matdes.2024.113126 10.1007/s42765-024-00451-3 10.1016/j.nantod.2024.102624 10.1016/j.biomaterials.2012.02.034 10.1088/1748-605X/aa9bbc 10.1016/j.ijom.2013.05.017 10.1016/j.apmt.2021.100942 10.1111/jre.12378 10.1093/burnst/tkac005 10.3389/fmats.2023.1220420 10.3389/fcimb.2021.639144 10.3390/polym8040115 10.1038/s41467-018-07666-0 10.3390/ijms25084510 10.1016/j.biomaterials.2022.121604 10.3389/fendo.2023.1152845 10.1016/j.nantod.2024.102430 10.1016/j.archoralbio.2013.11.008 10.1111/clr.13114 10.1021/acsnano.4c14305 10.3389/fcimb.2022.908859 10.1002/jps.22189 10.1166/jbn.2019.2743 10.1016/j.stem.2022.10.001 10.1016/j.biomaterials.2021.120998 10.1111/prd.12539 10.1016/j.stem.2022.07.006 10.1089/ten.tea.2017.0094 10.1016/j.colsurfb.2023.113318 10.1111/j.0906-6713.2004.003559.x 10.1111/j.1600-051X.2012.01853.x 10.11607/jomi.3915 10.1038/s41467-019-11397-1 10.1038/s41467-023-43428-3 10.1111/j.1600-0757.1999.tb00153.x 10.1016/j.joms.2008.11.022 10.1016/j.addr.2021.113971 10.1016/j.colsurfb.2023.113147 10.1007/s13233-016-4109-2 10.3390/jcm8091339 10.3389/fcimb.2021.627328 10.1016/j.matdes.2020.109300 10.1189/jlb.4A0214-095R 10.3390/ijms21093283 10.1016/j.nanoen.2024.110113 10.1002/adhm.202401667 10.1021/acsami.4c05722 10.2147/IJN.S455469 10.1002/term.2670 10.1111/prd.12619 10.1002/biot.201100294 10.1007/s10266-019-00470-2 10.1089/ten.tea.2017.0003 10.1186/s42825-023-00144-4 10.1021/acs.biomac.0c01163 10.3389/fbioe.2022.1017613 10.1111/prd.12368 10.3389/fbioe.2023.1117954 10.1007/s00784-014-1201-x 10.1038/s41598-022-09150-8 10.1177/0022034515616760 10.1016/j.mtbio.2023.100906 10.1111/jcpe.13056 10.1111/jcpe.13898 10.1038/s41467-018-03147-6 10.1111/prd.12526 10.2174/1874210601408010056 10.1016/j.foodchem.2025.145039 10.3389/fcell.2021.663037 10.1002/JPER.21-0469 10.1111/j.1600-0757.1993.tb00206.x 10.1002/jbmr.320 10.1039/C7BM00869D 10.1002/btm2.10493 10.1016/j.cden.2021.08.001 10.1016/j.actbio.2019.05.045 10.2147/IJN.S453702 10.1021/acsami.2c11131 10.1002/advs.202404518 10.1021/acs.est.7b01330 10.1002/adfm.202104636 10.1016/S0142-9612(99)00029-0 10.3390/nu16183075 10.1002/smtd.202301283 10.1016/j.cej.2022.138003 10.1111/prd.12568 10.1111/imr.12724 10.1093/rb/rbae058 10.1021/acsomega.3c01289 10.1111/j.1600-051X.2008.01369.x 10.1067/moe.2000.98922 10.1111/prd.12612 10.3390/membranes13010089 10.1016/j.carbpol.2021.117769 10.1002/adhm.202303600 10.1002/adhm.201800675 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1111/prd.70019 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Dentistry |
| EISSN | 1600-0757 |
| ExternalDocumentID | 41221631 10_1111_prd_70019 |
| Genre | Journal Article Review |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1OB 1OC 29O 33P 34H 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACCZN ACGFS ACGOF ACMXC ACPOU ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CITATION CS3 CWXXS D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS F00 F01 F04 F5P FUBAC G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O8X O9- OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 VVN W8V W99 WBKPD WBNRW WIH WIJ WIK WOHZO WPGGZ WQJ WXSBR XG1 YFH ZZTAW ~IA ~WT NPM 7X8 |
| ID | FETCH-LOGICAL-c162t-30bc1744e8c1c7b68f234b0ac6bd32defd77973789cb8cdfc87b1d68ebe7ffee3 |
| ISSN | 0906-6713 1600-0757 |
| IngestDate | Wed Nov 12 17:00:38 EST 2025 Thu Nov 13 04:43:40 EST 2025 Sat Nov 29 06:49:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | guided bone regeneration bone regeneration membrane design periodontal regeneration functional requirements guided tissue regeneration |
| Language | English |
| License | 2025 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c162t-30bc1744e8c1c7b68f234b0ac6bd32defd77973789cb8cdfc87b1d68ebe7ffee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-2836-5477 0000-0003-3290-3418 0000-0002-1900-9641 |
| PMID | 41221631 |
| PQID | 3271086071 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3271086071 pubmed_primary_41221631 crossref_primary_10_1111_prd_70019 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Nov-12 |
| PublicationDateYYYYMMDD | 2025-11-12 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-Nov-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Denmark |
| PublicationPlace_xml | – name: Denmark |
| PublicationTitle | Periodontology 2000 |
| PublicationTitleAlternate | Periodontol 2000 |
| PublicationYear | 2025 |
| References | Bonewald LF (e_1_2_10_48_1) 2011; 26 Zhu Y (e_1_2_10_242_1) 2023; 249 Fuchs A (e_1_2_10_32_1) 2019; 19 Ma ZQ (e_1_2_10_171_1) 2024; 10 Mao Z (e_1_2_10_130_1) 2024; 15 Pitaluga LH (e_1_2_10_181_1) 2018; 11 Gentile P (e_1_2_10_34_1) 2011; 6 Discher DE (e_1_2_10_139_1) 2005; 310 Chen EN (e_1_2_10_222_1) 2024; 11 Rocha S (e_1_2_10_82_1) 2023; 13 Lin S (e_1_2_10_98_1) 2025; 19 García‐Alvarez R (e_1_2_10_231_1) 2017; 49 Shi T (e_1_2_10_70_1) 2020; 108 Su N (e_1_2_10_215_1) 2022; 286 Cafferata EA (e_1_2_10_65_1) 2021; 92 Wen Z (e_1_2_10_60_1) 2025; 50 Boda SK (e_1_2_10_189_1) 2020; 21 Hong J (e_1_2_10_78_1) 2024; 133 Sun Y (e_1_2_10_209_1) 2024; 58 Becker W (e_1_2_10_20_1) 1993; 1 Buser D (e_1_2_10_21_1) 1999; 19 Chen ZT (e_1_2_10_133_1) 2018; 6 Peng FL (e_1_2_10_176_1) 2023; 5 Wei JW (e_1_2_10_228_1) 2019; 15 Gibbs S (e_1_2_10_54_1) 2019; 38 Niu X (e_1_2_10_179_1) 2021; 260 Wang LJ (e_1_2_10_123_1) 2024; 244 Lim TC (e_1_2_10_167_1) 2010; 94 Cekici A (e_1_2_10_213_1) 2014; 64 Chen Y (e_1_2_10_6_1) 2025; 23 Zhang J (e_1_2_10_57_1) 2020; 47 Lv L (e_1_2_10_151_1) 2018; 7 Nagasawa M (e_1_2_10_154_1) 2016; 95 Aprile P (e_1_2_10_117_1) 2020; 9 Talbott HE (e_1_2_10_91_1) 2022; 29 Buser D (e_1_2_10_14_1) 2023; 93 Liu X (e_1_2_10_99_1) 2020; 108 Li XY (e_1_2_10_218_1) 2021; 22 Mao LJ (e_1_2_10_147_1) 2022; 14 Lindner C (e_1_2_10_237_1) 2022; 12 Chen K (e_1_2_10_104_1) 2022; 10 Tsuchiya S (e_1_2_10_156_1) 2015; 30 Bee S‐L (e_1_2_10_124_1) 2022; 110 Chen ZT (e_1_2_10_225_1) 2016; 19 Thalakiriyawa DS (e_1_2_10_13_1) 2024; 74 Das KK (e_1_2_10_149_1) 2024; 39 Jiang Q (e_1_2_10_76_1) 2021; 11 Zhao W (e_1_2_10_219_1) 2025; 79 Chen Q (e_1_2_10_95_1) 2021; 9 Cui C (e_1_2_10_183_1) 2025; 30 Cheng Y (e_1_2_10_192_1) 2024; 13 Choi W (e_1_2_10_239_1) 2023; 14 Ouchi T (e_1_2_10_86_1) 2020; 14 Xing XJ (e_1_2_10_238_1) 2022; 218 Jiang S (e_1_2_10_166_1) 2019; 10 Gutta R (e_1_2_10_22_1) 2009; 67 O'Brien‐Simpson NM (e_1_2_10_92_1) 2004; 35 Lee B (e_1_2_10_4_1) 2025; 23 Nyman S (e_1_2_10_18_1) 1982; 9 Zhou XF (e_1_2_10_191_1) 2021; 198 Polimeni G (e_1_2_10_11_1) 2009; 36 Caridade SG (e_1_2_10_169_1) 2017; 23 Bao J (e_1_2_10_69_1) 2024; 51 Matsuzaka K (e_1_2_10_136_1) 1999; 20 Mahanonda R (e_1_2_10_72_1) 2016; 197 Bai YX (e_1_2_10_182_1) 2024; 8 Behring J (e_1_2_10_33_1) 2008; 96 Tsukasaki M (e_1_2_10_68_1) 2018; 9 Tan WL (e_1_2_10_112_1) 2012; 23 Zhang YP (e_1_2_10_240_1) 2023; 8 Liu YT (e_1_2_10_62_1) 2022; 28 Ding Q (e_1_2_10_217_1) 2025; 43 Klymov A (e_1_2_10_132_1) 2013; 1 Nicu EA (e_1_2_10_77_1) 2018; 18 Garrett S (e_1_2_10_26_1) 1997; 68 Ali AU (e_1_2_10_107_1) 2021; 64 Chierico A (e_1_2_10_148_1) 1999; 10 Ko Y‐G (e_1_2_10_158_1) 2016; 24 Ling Y (e_1_2_10_100_1) 2024; 19 Hyzy SL (e_1_2_10_153_1) 2017; 23 Wielento A (e_1_2_10_51_1) 2023; 102 Shin C (e_1_2_10_87_1) 2017; 52 Spinell T (e_1_2_10_118_1) 2019; 35 Kantarci A (e_1_2_10_53_1) 2022; 66 Saha S (e_1_2_10_234_1) 2023; 30 Meng LX (e_1_2_10_84_1) 2022; 10 Zhang H (e_1_2_10_175_1) 2016; 2 Jiao JY (e_1_2_10_159_1) 2023; 11 Brown BN (e_1_2_10_58_1) 2012; 33 Wennerberg A (e_1_2_10_152_1) 2014; 25 Wang J (e_1_2_10_25_1) 2016; 8 Wang FL (e_1_2_10_125_1) 2022; 13 Ceylan M (e_1_2_10_49_1) 2024; 13 Marian D (e_1_2_10_41_1) 2025; 61 Li J (e_1_2_10_200_1) 2021; 125 Li Y (e_1_2_10_101_1) 2024; 16 Sui L (e_1_2_10_110_1) 2020; 8 Walther K‐A (e_1_2_10_102_1) 2024; 96 Quirynen M (e_1_2_10_17_1) 2023; 93 Zhang YL (e_1_2_10_109_1) 2023; 14 Jiang Z (e_1_2_10_193_1) 2024; 19 Chen SZ (e_1_2_10_56_1) 2023; 8 Molly HA (e_1_2_10_96_1) 2024; 16 Gruber R (e_1_2_10_116_1) 2019; 46 Li QQ (e_1_2_10_131_1) 2023; 10 Zhao Y (e_1_2_10_198_1) 2024; 18 Yang YH (e_1_2_10_111_1) 2021; 17 Lei M (e_1_2_10_161_1) 2024; 11 Hu Y (e_1_2_10_227_1) 2024; 24 Calciolari E (e_1_2_10_157_1) 2018; 53 Dimitriou R (e_1_2_10_235_1) 2012; 10 Teng SH (e_1_2_10_174_1) 2016; 58 Wang Z (e_1_2_10_186_1) 2025; 489 Kato H (e_1_2_10_88_1) 2014; 59 Zumstein MT (e_1_2_10_36_1) 2017; 51 Zhang KR (e_1_2_10_180_1) 2019; 1 Mancini L (e_1_2_10_106_1) 2021; 14 Garcia E (e_1_2_10_81_1) 2020; 21 Zhao J (e_1_2_10_195_1) 2024; 11 Seo SJ (e_1_2_10_173_1) 2014; 96 Kim M (e_1_2_10_115_1) 2024; 12 Sasaki J‐I (e_1_2_10_35_1) 2021; 8 Wu S (e_1_2_10_129_1) 2024; 15 Thoma DS (e_1_2_10_90_1) 2018; 29 Ren M (e_1_2_10_178_1) 2025; 284 Chen Y (e_1_2_10_208_1) 2025; 46 Kwon T (e_1_2_10_94_1) 2021; 71 Li W (e_1_2_10_134_1) 2015; 7 Eke PI (e_1_2_10_2_1) 2020; 82 Wu L (e_1_2_10_3_1) 2022; 93 Bottino MC (e_1_2_10_229_1) 2014; 18 Engler AJ (e_1_2_10_141_1) 2006; 126 Carbonell JM (e_1_2_10_24_1) 2014; 43 Zhao Z (e_1_2_10_50_1) 2024; 18 Liu S (e_1_2_10_108_1) 2023; 222 Jo YK (e_1_2_10_190_1) 2023; 8 Parisi L (e_1_2_10_150_1) 2020; 117 Abbasi N (e_1_2_10_163_1) 2020; 5 Fu Z (e_1_2_10_205_1) 2023; 226 Wu J (e_1_2_10_196_1) 2018; 2018 Lu Y (e_1_2_10_122_1) 2024; 277 Fang X (e_1_2_10_223_1) 2024; 15 Luo XT (e_1_2_10_214_1) 2022; 12 Hu HT (e_1_2_10_155_1) 2013; 53 Lamers E (e_1_2_10_138_1) 2010; 31 Souza JCM (e_1_2_10_143_1) 2019; 94 Zellin G (e_1_2_10_165_1) 1996; 17 Rojas R (e_1_2_10_37_1) 2025; 8 Zhao Y (e_1_2_10_211_1) 2025; 44 Di Stefano M (e_1_2_10_93_1) 2022; 23 Xiao JH (e_1_2_10_177_1) 2024; 11 Carcuac O (e_1_2_10_61_1) 2014; 93 Jiang K (e_1_2_10_168_1) 2023; 140 Ma S (e_1_2_10_47_1) 2025; 46 Wang L (e_1_2_10_44_1) 2022; 10 Liu XZ (e_1_2_10_224_1) 2021; 276 Lin JJ (e_1_2_10_233_1) 2023; 11 Hutmacher D (e_1_2_10_38_1) 1996; 11 Yang J (e_1_2_10_5_1) 2025; 23 Chen S (e_1_2_10_40_1) 2023; 92 Chung IC (e_1_2_10_201_1) 2013; 14 Melgar‐Rodriguez S (e_1_2_10_71_1) 2024; 25 Miron RJ (e_1_2_10_9_1) 2025; 97 Abdo VL (e_1_2_10_31_1) 2023; 226 Tian B (e_1_2_10_197_1) 2022; 14 Shim JH (e_1_2_10_164_1) 2018; 13 Chu C (e_1_2_10_59_1) 2019; 99 Zhou HL (e_1_2_10_236_1) 2024; 161 Wang D (e_1_2_10_121_1) 2023; 10 Carrasco E (e_1_2_10_63_1) 2022; 22 e_1_2_10_10_1 Feng Y (e_1_2_10_113_1) 2025; 23 Rowe MJ (e_1_2_10_142_1) 2016; 104 Cui J (e_1_2_10_146_1) 2024; 6 Li Y (e_1_2_10_220_1) 2025; 61 Huang X (e_1_2_10_42_1) 2024; 33 Dahlin C (e_1_2_10_19_1) 1988; 81 Liu Z (e_1_2_10_221_1) 2024; 497 Felipe MEMC (e_1_2_10_29_1) 2007; 78 Yamada A (e_1_2_10_64_1) 2007; 120 Zhu BS (e_1_2_10_137_1) 2005; 11 Yan F (e_1_2_10_83_1) 2025; 35 Wang Y (e_1_2_10_140_1) 2018; 12 Burzyn D (e_1_2_10_66_1) 2013; 155 Chen ZT (e_1_2_10_135_1) 2017; 11 García SLA (e_1_2_10_89_1) 2020; 99 Polimeni G (e_1_2_10_12_1) 2004; 31 Brum IS (e_1_2_10_30_1) 2021; 21 Liu J (e_1_2_10_170_1) 2014; 8 Zhu M (e_1_2_10_73_1) 2014; 96 Liu J (e_1_2_10_85_1) 2020; 92 Alghamdi A (e_1_2_10_194_1) 2023; 95 Donos N (e_1_2_10_127_1) 2023; 93 Bentley ER (e_1_2_10_79_1) 2021; 178 Dahlen G (e_1_2_10_97_1) 2019; 8 Yang Z (e_1_2_10_206_1) 2022; 14 Ul Hassan S (e_1_2_10_55_1) 2021; 98 Xie J (e_1_2_10_188_1) 2021; 120 Qin Q (e_1_2_10_207_1) 2022; 54 Garcia Perez A (e_1_2_10_7_1) 2024; 22 Duske K (e_1_2_10_202_1) 2012; 39 Haegi TT (e_1_2_10_39_1) 2014; 45 Qiao F (e_1_2_10_210_1) 2025; 291 e_1_2_10_8_1 Xia Y (e_1_2_10_212_1) 2023; 465 Hathaway‐Schrader JD (e_1_2_10_43_1) 2021; 86 Xuan YW (e_1_2_10_216_1) 2022; 9 Zhang Y (e_1_2_10_28_1) 2013; 1 Wang YZ (e_1_2_10_230_1) 2010; 99 Vi L (e_1_2_10_45_1) 2018; 9 Chen WZ (e_1_2_10_144_1) 2024; 36 Marouf HA (e_1_2_10_23_1) 2000; 89 Greene AC (e_1_2_10_67_1) 2022; 12 Xiao LF (e_1_2_10_162_1) 2024; 7 Silva LM (e_1_2_10_75_1) 2019; 287 Tian Q (e_1_2_10_184_1) 2025; 212 Halder M (e_1_2_10_187_1) 2024; 25 Lei M (e_1_2_10_128_1) 2024; 11 Lee SB (e_1_2_10_103_1) 2010; 78 Yang YH (e_1_2_10_120_1) 2021; 31 Yang S (e_1_2_10_226_1) 2024; 41 Deng X (e_1_2_10_199_1) 2024; 130 Wang J (e_1_2_10_74_1) 2021; 11 Feng C (e_1_2_10_80_1) 2023; 8 Li Y (e_1_2_10_145_1) 2022; 18 Xu CC (e_1_2_10_126_1) 2022; 450 Wang L (e_1_2_10_204_1) 2025; 49 Miron RJ (e_1_2_10_15_1) 2024; 94 Bottino MC (e_1_2_10_27_1) 2012; 28 Li XY (e_1_2_10_172_1) 2023; 24 Hasturk H (e_1_2_10_105_1) 2022; 66 Graves DT (e_1_2_10_52_1) 2018; 45 Sun L (e_1_2_10_185_1) 2024; 15 Chen J (e_1_2_10_203_1) 2017; 5 Xue JJ (e_1_2_10_232_1) 2015; 9 Mizraji G (e_1_2_10_16_1) 2023; 93 Liu Y (e_1_2_10_160_1) 2024; 13 Mousavi SJ (e_1_2_10_241_1) 2023; 50 Wang Y (e_1_2_10_46_1) 2022; 29 Omi M (e_1_2_10_114_1) 2022; 60 Lu X (e_1_2_10_119_1) 2024; 243 |
| References_xml | – volume: 8 start-page: 207 issue: 1 year: 2023 ident: e_1_2_10_56_1 article-title: Macrophages in immunoregulation and therapeutics publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-023-01452-1 – volume: 120 start-page: 573 issue: 4 year: 2007 ident: e_1_2_10_64_1 article-title: Interleukin‐4 inhibition of osteoclast differentiation is stronger than that of interleukin‐13 and they are equivalent for induction of osteoprotegerin production from osteoblasts publication-title: Immunology doi: 10.1111/j.1365-2567.2006.02538.x – volume: 120 year: 2021 ident: e_1_2_10_188_1 article-title: The effects of alignment and diameter of electrospun fibers on the cellular behaviors and osteogenesis of BMSCs publication-title: Mat Sci Eng C‐Mater doi: 10.1016/j.msec.2020.111787 – volume: 19 start-page: 304 issue: 6 year: 2016 ident: e_1_2_10_225_1 article-title: Osteoimmunomodulation for the development of advanced bone biomaterials publication-title: Mater Today doi: 10.1016/j.mattod.2015.11.004 – volume: 465 year: 2023 ident: e_1_2_10_212_1 article-title: 3D‐printed dual‐ion chronological release functional platform reconstructs neuro‐vascularization network for critical‐sized bone defect regeneration publication-title: Chem Eng J doi: 10.1016/j.cej.2023.143015 – volume: 28 start-page: 405 issue: 8 year: 2022 ident: e_1_2_10_62_1 article-title: Challenges and tissue engineering strategies of periodontal‐guided tissue Regeneration publication-title: Tissue Eng Part C‐Me doi: 10.1089/ten.tec.2022.0106 – volume: 94 start-page: 1303 issue: 4 year: 2010 ident: e_1_2_10_167_1 article-title: Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo‐vascularization and cellular infiltration publication-title: J Biomed Mater Res Part A doi: 10.1002/jbm.a.32747 – volume: 45 start-page: 185 issue: 3 year: 2014 ident: e_1_2_10_39_1 article-title: Regenerative periodontal therapy publication-title: Dent Dig – volume: 11 start-page: 400 issue: 3 year: 2018 ident: e_1_2_10_181_1 article-title: Electrospun F18 bioactive glass/PCL‐poly (ε‐caprolactone)‐membrane for guided tissue Regeneration publication-title: Materials doi: 10.3390/ma11030400 – volume: 30 year: 2025 ident: e_1_2_10_183_1 article-title: Peptide platform for 3D‐printed Ti implants with synergistic antibacterial and osteogenic functions to enhance osseointegration publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2024.101430 – volume: 96 start-page: 1 issue: 1 year: 2008 ident: e_1_2_10_33_1 article-title: Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A Systematic Review publication-title: Odontology doi: 10.1007/s10266-008-0087-y – volume: 93 start-page: 1083 issue: 11 year: 2014 ident: e_1_2_10_61_1 article-title: Composition of human peri‐implantitis and periodontitis lesions publication-title: J Dent – volume: 36 issue: 13 year: 2024 ident: e_1_2_10_144_1 article-title: Harmonizing thickness and permeability in bone tissue engineering: a novel silk fibroin membrane inspired by spider silk dynamics publication-title: Adv Mater doi: 10.1002/adma.202310697 – volume: 25 start-page: 2286 issue: 4 year: 2024 ident: e_1_2_10_187_1 article-title: Investigating the role of amino acids in short peptides for hydroxyapatite binding and osteogenic differentiation of mesenchymal stem cells to aid bone Regeneration publication-title: Biomacromolecules doi: 10.1021/acs.biomac.3c01148 – volume: 284 year: 2025 ident: e_1_2_10_178_1 article-title: Electrospinning of recombinant human‐like collagen‐reinforced PCL nanofibrous membranes using benign solvents for periodontal regeneration publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2024.137954 – volume: 9 start-page: 1600 issue: 2 year: 2015 ident: e_1_2_10_232_1 article-title: Electrospun microfiber membranes embedded with drug‐loaded clay nanotubes for sustained antimicrobial protection publication-title: ACS Nano doi: 10.1021/nn506255e – volume: 98 start-page: 1007 issue: 6 year: 2021 ident: e_1_2_10_55_1 article-title: Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration publication-title: Chem Biol Drug Des doi: 10.1111/cbdd.13959 – volume: 10 start-page: 3984 issue: 6 year: 2024 ident: e_1_2_10_171_1 article-title: Shear flow‐assembled Janus membrane with bifunctional osteogenic and antibacterial effects for guided bone Regeneration publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.4c00420 – volume: 243 year: 2024 ident: e_1_2_10_119_1 article-title: Janus sponge/electrospun fibre composite combined with EGF/bFGF/CHX promotes reconstruction in oral tissue regeneration publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2024.114117 – volume: 44 start-page: 339 year: 2025 ident: e_1_2_10_211_1 article-title: Periosteum‐bone inspired hierarchical scaffold with endogenous piezoelectricity for neuro‐vascularized bone regeneration publication-title: Bioact Mater – volume: 1 start-page: 10 issue: 1 year: 2013 ident: e_1_2_10_28_1 article-title: Membranes for guided tissue and bone regeneration publication-title: Ann Oral Maxillofac Surg doi: 10.13172/2052-7837-1-1-451 – volume: 74 start-page: 25 issue: 1 year: 2024 ident: e_1_2_10_13_1 article-title: Advances in regenerative dentistry approaches: an update publication-title: Int Dent J doi: 10.1016/j.identj.2023.07.008 – volume: 11 issue: 12 year: 2024 ident: e_1_2_10_128_1 article-title: Electro‐sorting create heterogeneity: constructing a multifunctional Janus film with integrated compositional and microstructural gradients for guided bone Regeneration publication-title: Adv Sci doi: 10.1002/advs.202307606 – volume: 117 year: 2020 ident: e_1_2_10_150_1 article-title: Titanium dental implants hydrophilicity promotes preferential serum fibronectin over albumin competitive adsorption modulating early cell response publication-title: Mat Sci Eng C‐Mater doi: 10.1016/j.msec.2020.111307 – volume: 19 start-page: 1 year: 2019 ident: e_1_2_10_32_1 article-title: Medical‐grade polycaprolactone scaffolds made by melt electrospinning writing for oral bone regeneration – a pilot study in vitro publication-title: BMC Oral Health doi: 10.1186/s12903-019-0717-5 – volume: 8 year: 2025 ident: e_1_2_10_37_1 article-title: Self‐standing films of medical grade PLA/PEG copolymers for guided bone regeneration publication-title: Next Materials doi: 10.1016/j.nxmate.2025.100561 – volume: 133 year: 2024 ident: e_1_2_10_78_1 article-title: The immune cells in modulating osteoclast formation and bone metabolism publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2024.112151 – volume: 10 issue: 16 year: 2023 ident: e_1_2_10_131_1 article-title: Band‐aid‐like self‐fixed barrier membranes enable superior bone augmentation publication-title: Adv Sci doi: 10.1002/advs.202206981 – volume: 13 start-page: 53 year: 2022 ident: e_1_2_10_125_1 article-title: Photocrosslinkable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogenetic effects during guided bone regeneration publication-title: Bioact Mater – volume: 31 start-page: 3307 issue: 12 year: 2010 ident: e_1_2_10_138_1 article-title: The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.034 – volume: 10 start-page: 415 issue: 5 year: 1999 ident: e_1_2_10_148_1 article-title: Electrically charged GTAM membranes stimulate osteogenesis in rabbit calvarial defects publication-title: Clin Oral Implants Res doi: 10.1034/j.1600-0501.1999.100508.x – volume: 46 start-page: 37 year: 2025 ident: e_1_2_10_208_1 article-title: Throw out an oligopeptide to catch a protein: deep learning and natural language processing‐screened tripeptide PSP promotes Osteolectin‐mediated vascularized bone regeneration publication-title: Bioact Mater – volume: 81 start-page: 672 issue: 5 year: 1988 ident: e_1_2_10_19_1 article-title: Healing of bone defects by guided tissue Regeneration publication-title: Plast Reconstr Surg doi: 10.1097/00006534-198805000-00004 – volume: 125 start-page: 112 year: 2021 ident: e_1_2_10_200_1 article-title: Matrix stiffening by self‐mineralizable guided bone regeneration publication-title: Acta Biomater doi: 10.1016/j.actbio.2021.02.012 – volume: 92 start-page: 123 issue: 1 year: 2021 ident: e_1_2_10_65_1 article-title: Boldine inhibits the alveolar bone resorption during ligature‐induced periodontitis by modulating the Th17/Treg imbalance publication-title: J Periodontol doi: 10.1002/JPER.20-0055 – volume: 28 start-page: 703 issue: 7 year: 2012 ident: e_1_2_10_27_1 article-title: Recent advances in the development of GTR/GBR membranes for periodontal regeneration‐a materials perspective publication-title: Dent Mater doi: 10.1016/j.dental.2012.04.022 – volume: 23 start-page: 149 issue: 1 year: 2025 ident: e_1_2_10_6_1 article-title: Periodontitis and the risk of heart failure: a meta‐analysis and Mendelian randomisation study publication-title: Oral Hlth Prev Dent – volume: 23 start-page: 5142 issue: 9 year: 2022 ident: e_1_2_10_93_1 article-title: Impact of Oral microbiome in periodontal health and periodontitis: a critical review on prevention and treatment publication-title: Int J Mol Sci doi: 10.3390/ijms23095142 – volume: 17 issue: 14 year: 2021 ident: e_1_2_10_111_1 article-title: Biomimetic, stiff, and adhesive periosteum with osteogenic‐angiogenic coupling effect for bone Regeneration publication-title: Small doi: 10.1002/smll.202006598 – volume: 35 issue: 7 year: 2025 ident: e_1_2_10_83_1 article-title: Hierarchical mineralized collagen coated Zn membrane to tailor cell microenvironment for guided bone Regeneration publication-title: Adv Funct Mater doi: 10.1002/adfm.202412695 – volume: 22 start-page: 495 year: 2024 ident: e_1_2_10_7_1 article-title: Relationship between low education and poor periodontal status among Mexican adults aged ≥50 years publication-title: Oral Hlth Prev Dent – volume: 23 start-page: 271 issue: 1 year: 2025 ident: e_1_2_10_4_1 article-title: Association of Body Mass Index and Waist Circumference with periodontal disease publication-title: Oral Hlth Prev Dent – volume: 33 start-page: 129 year: 2024 ident: e_1_2_10_42_1 article-title: Biomaterial scaffolds in maxillofacial bone tissue engineering: a review of recent advances publication-title: Bioact Mater – volume: 11 issue: 13 year: 2024 ident: e_1_2_10_161_1 article-title: Programmable electro‐assembly of collagen: constructing porous Janus films with customized dual signals for immunomodulation and tissue Regeneration in periodontitis treatment publication-title: Adv Sci doi: 10.1002/advs.202305756 – volume: 10 start-page: 16 issue: 1 year: 2022 ident: e_1_2_10_44_1 article-title: Mechanical regulation of bone remodeling publication-title: Bone Res doi: 10.1038/s41413-022-00190-4 – volume: 92 start-page: 220 issue: 1 year: 2023 ident: e_1_2_10_40_1 article-title: Complications and treatment errors in implant positioning in the aesthetic zone: diagnosis and possible solutions publication-title: Periodontol 2000 doi: 10.1111/prd.12474 – volume: 64 start-page: 57 issue: 1 year: 2014 ident: e_1_2_10_213_1 article-title: Inflammatory and immune pathways in the pathogenesis of periodontal disease publication-title: Periodontol 2000 doi: 10.1111/prd.12002 – volume: 50 start-page: 1390 issue: 10 year: 2023 ident: e_1_2_10_241_1 article-title: In vivo evaluation of bone regeneration using ZIF8‐modified polypropylene membrane in rat calvarium defects publication-title: J Clin Periodontol doi: 10.1111/jcpe.13855 – volume: 25 start-page: 1041 issue: 9 year: 2014 ident: e_1_2_10_152_1 article-title: Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia publication-title: Clin Oral Implants Res doi: 10.1111/clr.12213 – volume: 13 start-page: 1090 issue: 13 year: 2024 ident: e_1_2_10_49_1 article-title: Osteogenic differentiation of human gingival fibroblasts inhibits osteoclast formation publication-title: Cells doi: 10.3390/cells13131090 – volume: 2 start-page: 2162 issue: 12 year: 2016 ident: e_1_2_10_175_1 article-title: Bilayered PLGA/wool keratin composite membranes support periodontal Regeneration in beagle dogs publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.6b00357 – volume: 30 start-page: 46 year: 2023 ident: e_1_2_10_234_1 article-title: Collagen membrane functionalized with magnesium oxide via room‐temperature atomic layer deposition promotes osteopromotive and antimicrobial properties publication-title: Bioact Mater – volume: 79 year: 2025 ident: e_1_2_10_219_1 article-title: Revolutionizing oral care: reactive oxygen species (ROS)‐regulating biomaterials for combating infection and inflammation publication-title: Redox Biol doi: 10.1016/j.redox.2024.103451 – volume: 99 issue: 7 year: 2020 ident: e_1_2_10_89_1 article-title: The phenotype of gingival fibroblasts and their potential use in advanced therapies publication-title: Eur J Cell Biol doi: 10.1016/j.ejcb.2020.151123 – volume: 18 start-page: 7204 issue: 9 year: 2024 ident: e_1_2_10_198_1 article-title: Janus membrane with intrafibrillarly strontium‐apatite‐mineralized collagen for guided bone Regeneration publication-title: ACS Nano doi: 10.1021/acsnano.3c12403 – volume: 11 start-page: 9223 issue: 38 year: 2023 ident: e_1_2_10_233_1 article-title: Janus functional electrospun polyurethane fibrous membranes for periodontal tissue regeneration publication-title: J Mater Chem B doi: 10.1039/D3TB01407J – volume: 15 start-page: 9071 issue: 1 year: 2024 ident: e_1_2_10_223_1 article-title: Polyphenol‐mediated redox‐active hydrogel with H2S gaseous‐bioelectric coupling for periodontal bone healing in diabetes publication-title: Nat Commun doi: 10.1038/s41467-024-53290-6 – volume: 12 start-page: 29 issue: 1 year: 2024 ident: e_1_2_10_115_1 article-title: RUFY4 deletion prevents pathological bone loss by blocking endo‐lysosomal trafficking of osteoclasts publication-title: Bone Res doi: 10.1038/s41413-024-00326-8 – volume: 15 start-page: 2587 issue: 5 year: 2024 ident: e_1_2_10_185_1 article-title: Structural characterisation of deer sinew peptides as calcium carriers, their promotion of MC3T3‐E1 cell proliferation and their effect on bone deposition in mice publication-title: Food Funct doi: 10.1039/D3FO04627C – volume: 197 start-page: 715 issue: 3 year: 2016 ident: e_1_2_10_72_1 article-title: Human memory B cells in healthy gingiva, gingivitis, and periodontitis publication-title: J Immunol doi: 10.4049/jimmunol.1600540 – volume: 49 start-page: 113 year: 2017 ident: e_1_2_10_231_1 article-title: 3D scaffold with effective multidrug sequential release against bacteria biofilm publication-title: Acta Biomater doi: 10.1016/j.actbio.2016.11.028 – volume: 78 start-page: 1209 issue: 7 year: 2007 ident: e_1_2_10_29_1 article-title: Comparison of two surgical procedures for use of the acellular dermal matrix graft in the treatment of gingival recession: a randomized controlled clinical study publication-title: J Periodontol doi: 10.1902/jop.2007.060356 – volume: 39 year: 2024 ident: e_1_2_10_149_1 article-title: Interplay of piezoelectricity and electrical stimulation in tissue engineering and regenerative medicine publication-title: Appl Mater Today doi: 10.1016/j.apmt.2024.102332 – volume: 46 start-page: 97 year: 2025 ident: e_1_2_10_47_1 article-title: A deformable SIS/HA composite hydrogel coaxial scaffold promotes alveolar bone regeneration after tooth extraction publication-title: Bioact Mater – volume: 497 year: 2024 ident: e_1_2_10_221_1 article-title: Smart glucose‐responsive hydrogel with ROS scavenging and homeostasis regulating properties for diabetic bone regeneration publication-title: Chem Eng J doi: 10.1016/j.cej.2024.154433 – volume: 35 start-page: 963 issue: 7 year: 2019 ident: e_1_2_10_118_1 article-title: In‐vitro cytocompatibility and growth factor content of GBR/GTR membranes publication-title: Dent Mater doi: 10.1016/j.dental.2019.03.011 – volume: 9 start-page: 290 issue: 4 year: 1982 ident: e_1_2_10_18_1 article-title: New attachment following surgical‐treatment of human periodontal‐disease publication-title: J Clin Periodontol doi: 10.1111/j.1600-051X.1982.tb02095.x – volume: 8 start-page: 28 issue: 1 year: 2023 ident: e_1_2_10_240_1 article-title: Janus porous polylactic acid membranes with versatile metal‐phenolic interface for biomimetic periodontal bone regeneration publication-title: npj Regener Med doi: 10.1038/s41536-023-00305-3 – volume: 50 start-page: 95 year: 2025 ident: e_1_2_10_60_1 article-title: An engineered M2 macrophage‐derived exosomes‐loaded electrospun biomimetic periosteum promotes cell recruitment, immunoregulation, and angiogenesis in bone regeneration publication-title: Bioact Mater – volume: 18 start-page: 29507 issue: 43 year: 2024 ident: e_1_2_10_50_1 article-title: Bioinspired glycopeptide hydrogel reestablishing bone homeostasis through mediating osteoclasts and osteogenesis in periodontitis treatment publication-title: ACS Nano doi: 10.1021/acsnano.4c05677 – volume: 102 start-page: 489 issue: 5 year: 2023 ident: e_1_2_10_51_1 article-title: The role of gingival fibroblasts in the pathogenesis of periodontitis publication-title: J Dent Res doi: 10.1177/00220345231151921 – volume: 31 start-page: 927 issue: 11 year: 2004 ident: e_1_2_10_12_1 article-title: Prognostic factors for alveolar regeneration: bone formation at teeth and titanium implants publication-title: J Clin Periodontol doi: 10.1111/j.1600-051X.2004.00590.x – volume: 68 start-page: 667 issue: 7 year: 1997 ident: e_1_2_10_26_1 article-title: Comparison of a bioabsorbable GTR barrier to a non‐absorbable barrier in treating human class II furcation defects. A multi‐center parallel design randomized single‐blind trial publication-title: J Periodontol doi: 10.1902/jop.1997.68.7.667 – volume: 9 issue: 19 year: 2020 ident: e_1_2_10_117_1 article-title: Membranes for guided bone Regeneration: a road from bench to bedside publication-title: Adv Healthc Mater doi: 10.1002/adhm.202000707 – volume: 15 start-page: 119 issue: 1 year: 2024 ident: e_1_2_10_129_1 article-title: All‐in‐one porous membrane enables full protection in guided bone regeneration publication-title: Nat Commun doi: 10.1038/s41467-023-43476-9 – volume: 23 start-page: 1 issue: 5 year: 2012 ident: e_1_2_10_112_1 article-title: A systematic review of post‐extractional alveolar hard and soft tissue dimensional changes in humans publication-title: Clin Oral Implants Res doi: 10.1111/j.1600-0501.2011.02375.x – volume: 53 start-page: 174 issue: 2 year: 2018 ident: e_1_2_10_157_1 article-title: Protein expression during early stages of bone regeneration under hydrophobic and hydrophilic titanium domes. A pilot study publication-title: J Periodontal Res doi: 10.1111/jre.12498 – volume: 161 year: 2024 ident: e_1_2_10_236_1 article-title: A Janus, robust, biodegradable bacterial cellulose/Ti3C2Tx MXene bilayer membranes for guided bone regeneration publication-title: Biomater Adv doi: 10.1016/j.bioadv.2024.213892 – volume: 92 year: 2020 ident: e_1_2_10_85_1 article-title: Stem cells in the periodontal ligament differentiated into osteogenic, fibrogenic and cementogenic lineages for the regeneration of the periodontal complex publication-title: J Dent doi: 10.1016/j.jdent.2019.103259 – volume: 310 start-page: 1139 issue: 5751 year: 2005 ident: e_1_2_10_139_1 article-title: Tissue cells feel and respond to the stiffness of their substrate publication-title: Science doi: 10.1126/science.1116995 – volume: 14 issue: 4 year: 2013 ident: e_1_2_10_201_1 article-title: The influence of different nanostructured scaffolds on fibroblast growth publication-title: Sci Technol Adv Mater doi: 10.1088/1468-6996/14/4/044401 – volume: 14 start-page: 45 issue: 1 year: 2022 ident: e_1_2_10_197_1 article-title: A 3D‐printed molybdenum‐containing scaffold exerts dual pro‐osteogenic and anti‐osteoclastogenic effects to facilitate alveolar bone repair publication-title: Int J Oral Sci doi: 10.1038/s41368-022-00195-z – volume: 94 start-page: 114 issue: 1 year: 2024 ident: e_1_2_10_15_1 article-title: Extended platelet‐rich fibrin publication-title: Periodontol 2000 doi: 10.1111/prd.12537 – volume: 45 start-page: 285 issue: 3 year: 2018 ident: e_1_2_10_52_1 article-title: Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL publication-title: J Clin Periodontol doi: 10.1111/jcpe.12851 – volume: 7 start-page: 20845 issue: 37 year: 2015 ident: e_1_2_10_134_1 article-title: Multifunctional chitosan‐45S5 bioactive glass‐poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) microsphere composite membranes for guided tissue/bone Regeneration publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b06128 – volume: 110 start-page: 2157 issue: 9 year: 2022 ident: e_1_2_10_124_1 article-title: Asymmetric resorbable‐based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: a review publication-title: J Biomed Mater Res B doi: 10.1002/jbm.b.35060 – volume: 93 start-page: 56 issue: 1 year: 2023 ident: e_1_2_10_16_1 article-title: Membrane barriers for guided bone regeneration: an overview of available biomaterials publication-title: Periodontol 2000 doi: 10.1111/prd.12502 – volume: 8 start-page: 54 issue: 1 year: 2021 ident: e_1_2_10_35_1 article-title: Barrier membranes for tissue regeneration in dentistry publication-title: Biomater Invest Dent – volume: 93 start-page: 26 issue: 1 year: 2023 ident: e_1_2_10_127_1 article-title: Bone regeneration in implant dentistry: which are the factors affecting the clinical outcome? publication-title: Periodontol 2000 doi: 10.1111/prd.12518 – volume: 2018 year: 2018 ident: e_1_2_10_196_1 article-title: The differentiation balance of bone marrow mesenchymal stem cells is crucial to hematopoiesis publication-title: Stem Cells Int – volume: 14 start-page: 72 year: 2020 ident: e_1_2_10_86_1 article-title: Mesenchymal stem cell‐based tissue regeneration therapies for periodontitis publication-title: Regen Ther doi: 10.1016/j.reth.2019.12.011 – volume: 15 start-page: 4160 issue: 1 year: 2024 ident: e_1_2_10_130_1 article-title: Mechanically robust and personalized silk fibroin‐magnesium composite scaffolds with water‐responsive shape‐memory for irregular bone regeneration publication-title: Nat Commun doi: 10.1038/s41467-024-48417-8 – volume: 218 year: 2022 ident: e_1_2_10_238_1 article-title: A novel visible light‐curing chitosan‐based hydrogel membrane for guided tissue regeneration publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2022.112760 – volume: 6 start-page: 1855 issue: 6 year: 2024 ident: e_1_2_10_146_1 article-title: Remodeling electrophysiological microenvironment for promoting bone defect repair via electret hybrid electrospun fibrous mat publication-title: Adv Fiber Mater doi: 10.1007/s42765-024-00457-x – volume: 1 start-page: 770 issue: 3 year: 2019 ident: e_1_2_10_180_1 article-title: Multifunctional bilayer nanocomposite guided bone Regeneration membrane publication-title: Matter doi: 10.1016/j.matt.2019.05.021 – volume: 140 issue: 34 year: 2023 ident: e_1_2_10_168_1 article-title: Potential of uniaxial electrospun composite nanofibers based on polycaprolactone and polyvinyl alcohol in guided bone regeneration publication-title: J Appl Polym Sci doi: 10.1002/app.54313 – volume: 12 start-page: 378 issue: 4 year: 2022 ident: e_1_2_10_237_1 article-title: In vivo biocompatibility analysis of a novel barrier membrane based on bovine dermis‐derived collagen for guided bone Regeneration (GBR) publication-title: Membranes doi: 10.3390/membranes12040378 – volume: 108 start-page: 207 year: 2020 ident: e_1_2_10_99_1 article-title: A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration publication-title: Acta Biomater doi: 10.1016/j.actbio.2020.03.044 – volume: 24 issue: 1 year: 2023 ident: e_1_2_10_172_1 article-title: Optimizing the biodegradability and osteogenesis of biogenic collagen membrane via fluoride‐modified polymer‐induced liquid precursor process publication-title: Sci Technol Adv Mater doi: 10.1080/14686996.2023.2186690 – volume: 212 year: 2025 ident: e_1_2_10_184_1 article-title: Deciphering the calcium‐binding mechanism of a novel cod bone‐derived peptide: a synergistic experimental and computational analysis publication-title: Food Res Int doi: 10.1016/j.foodres.2025.116490 – volume: 126 start-page: 677 issue: 4 year: 2006 ident: e_1_2_10_141_1 article-title: Matrix elasticity directs stem cell lineage specification publication-title: Cell doi: 10.1016/j.cell.2006.06.044 – volume: 17 start-page: 695 issue: 7 year: 1996 ident: e_1_2_10_165_1 article-title: Effects of different osteopromotive membrane porosities on experimental bone neogenesis in rats publication-title: Biomaterials doi: 10.1016/0142-9612(96)86739-1 – volume: 58 start-page: 610 year: 2016 ident: e_1_2_10_174_1 article-title: Biomimetic composite microspheres of collagen/chitosan/nano‐hydroxyapatite: in‐situ synthesis and characterization publication-title: Mat Sci Eng C‐Mater doi: 10.1016/j.msec.2015.09.021 – volume: 66 start-page: 39 issue: 1 year: 2022 ident: e_1_2_10_105_1 article-title: Inflammation and periodontal regeneration publication-title: Dent Clin N Am doi: 10.1016/j.cden.2021.08.003 – volume: 41 start-page: 239 year: 2024 ident: e_1_2_10_226_1 article-title: A five‐in‐one novel MOF‐modified injectable hydrogel with thermo‐sensitive and adhesive properties for promoting alveolar bone repair in periodontitis: antibacterial, hemostasis, immune reprogramming, pro‐osteo‐/angiogenesis and recruitment publication-title: Bioact Mater – volume: 60 issue: 8 year: 2022 ident: e_1_2_10_114_1 article-title: Roles of osteoclasts in alveolar bone remodeling publication-title: Genesis doi: 10.1002/dvg.23490 – volume: 226 year: 2023 ident: e_1_2_10_205_1 article-title: Promoting bone regeneration via bioactive calcium silicate nanowires reinforced poly (E‐caprolactone) electrospun fibrous membranes publication-title: Mater Des doi: 10.1016/j.matdes.2023.111671 – volume: 38 start-page: 63 year: 2019 ident: e_1_2_10_54_1 article-title: Biology of soft tissue repair: gingival epithelium in wound healing and attachment to the tooth and abutment surface publication-title: Eur Cell Mater doi: 10.22203/eCM.v038a06 – volume: 249 year: 2023 ident: e_1_2_10_242_1 article-title: Resveratrol‐loaded co‐axial electrospun poly(ε‐caprolactone)/chitosan/polyvinyl alcohol membranes for promotion of cells osteogenesis and bone regeneration publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2023.126085 – volume: 8 year: 2020 ident: e_1_2_10_110_1 article-title: ROS‐scavenging nanomaterials to treat periodontitis publication-title: Front Chem doi: 10.3389/fchem.2020.595530 – volume: 54 start-page: 1844 issue: 11 year: 2022 ident: e_1_2_10_207_1 article-title: Neurovascular coupling in bone regeneration publication-title: Exp Mol Med doi: 10.1038/s12276-022-00899-6 – volume: 5 start-page: 3640 issue: 20 year: 2017 ident: e_1_2_10_203_1 article-title: Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration publication-title: J Mater Chem B doi: 10.1039/C7TB00485K – volume: 64 year: 2021 ident: e_1_2_10_107_1 article-title: Performance of simvastatin microsponges as a local treatment for chronic periodontitis–randomized clinical trial publication-title: J Drug Delivery Sci Technol doi: 10.1016/j.jddst.2021.102583 – volume: 47 start-page: 451 issue: 4 year: 2020 ident: e_1_2_10_57_1 article-title: NLRP3 inflammasome mediates M1 macrophage polarization and IL‐1β production in inflammatory root resorption publication-title: J Clin Periodontol doi: 10.1111/jcpe.13258 – volume: 78 start-page: S22 year: 2010 ident: e_1_2_10_103_1 article-title: Mechanistic connection between inflammation and fibrosis publication-title: Kidney Int doi: 10.1038/ki.2010.418 – volume: 291 year: 2025 ident: e_1_2_10_210_1 article-title: Growth factor collected cell membrane‐functionalized matrix for vascular‐innervated bone regeneration publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2024.112019 – volume: 9 year: 2022 ident: e_1_2_10_216_1 article-title: Hierarchical intrafibrillarly mineralized collagen membrane promotes guided bone regeneration and regulates M2 macrophage polarization publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2021.781268 – volume: 82 start-page: 257 issue: 1 year: 2020 ident: e_1_2_10_2_1 article-title: Recent epidemiologic trends in periodontitis in the USA publication-title: Periodontol 2000 doi: 10.1111/prd.12323 – volume: 1 start-page: 135 issue: 2 year: 2013 ident: e_1_2_10_132_1 article-title: Understanding the role of nano‐topography on the surface of a bone‐implant publication-title: Biomater Sci doi: 10.1039/C2BM00032F – volume: 53 start-page: 833 issue: 4 year: 2013 ident: e_1_2_10_155_1 article-title: Processing and properties of hydrophilic electrospun polylactic acid/beta‐tricalcium phosphate membrane for dental applications publication-title: Polym Eng Sci doi: 10.1002/pen.23329 – volume: 43 start-page: 550 year: 2025 ident: e_1_2_10_217_1 article-title: A natural polyphenolic nanoparticle‐knotted hydrogel scavenger for osteoarthritis therapy publication-title: Bioact Mater – volume: 21 start-page: 210 issue: 1 year: 2021 ident: e_1_2_10_30_1 article-title: Properties of a bovine collagen type I membrane for guided bone regeneration applications publication-title: E‐Polym doi: 10.1515/epoly-2021-0021 – volume: 11 start-page: 4494 issue: 5 year: 2017 ident: e_1_2_10_135_1 article-title: Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone Regeneration applications publication-title: ACS Nano doi: 10.1021/acsnano.6b07808 – volume: 277 year: 2024 ident: e_1_2_10_122_1 article-title: An enhanced tri‐layer bionic periosteum with gradient structure loaded by mineralized collagen for guided bone regeneration and in‐situ repair publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2024.134148 – volume: 10 start-page: 81 year: 2012 ident: e_1_2_10_235_1 article-title: The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence publication-title: BMC Med doi: 10.1186/1741-7015-10-81 – volume: 61 start-page: 20 issue: 1 year: 2025 ident: e_1_2_10_41_1 article-title: Challenges and innovations in alveolar bone Regeneration: a narrative review on materials, techniques, clinical outcomes, and future directions publication-title: Medicina‐Lithuania – volume: 97 start-page: 153 issue: 1 year: 2025 ident: e_1_2_10_9_1 article-title: Autogenous platelet concentrates for treatment of intrabony defects‐a systematic review with meta‐analysis publication-title: Periodontol 2000 doi: 10.1111/prd.12598 – volume: 14 start-page: 36395 issue: 32 year: 2022 ident: e_1_2_10_206_1 article-title: Self‐adhesive hydrogel biomimetic periosteum to promote critical‐size bone defect repair via synergistic osteogenesis and angiogenesis publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c08400 – volume: 71 start-page: 462 issue: 6 year: 2021 ident: e_1_2_10_94_1 article-title: Current concepts in the management of periodontitis publication-title: Int Dent J doi: 10.1111/idj.12630 – volume: 11 issue: 3 year: 2024 ident: e_1_2_10_177_1 article-title: Bioinspired polysaccharide‐based nanocomposite membranes with robust wet mechanical properties for guided bone regeneration publication-title: Natl Sci Rev doi: 10.1093/nsr/nwad333 – volume: 22 start-page: 97 issue: 2 year: 2022 ident: e_1_2_10_63_1 article-title: The role of T cells in age‐related diseases publication-title: Nat Rev Immunol doi: 10.1038/s41577-021-00557-4 – volume: 99 start-page: 73 year: 2019 ident: e_1_2_10_59_1 article-title: Evaluation of epigallocatechin‐3‐gallate (EGCG) modified collagen in guided bone regeneration (GBR) surgery and modulation of macrophage phenotype publication-title: Mat Sci Eng C Mater doi: 10.1016/j.msec.2019.01.083 – volume: 96 start-page: 31 year: 2014 ident: e_1_2_10_173_1 article-title: Enhanced mechanical properties and bone bioactivity of chitosan/silica membrane by functionalized‐carbon nanotube incorporation publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2014.03.004 – volume: 95 start-page: 1958 issue: 3 year: 2023 ident: e_1_2_10_194_1 article-title: Nanoscopic characterization of cell migration under flow using optical and electron microscopy publication-title: Anal Chem doi: 10.1021/acs.analchem.2c04222 – volume: 104 start-page: 594 issue: 3 year: 2016 ident: e_1_2_10_142_1 article-title: Dimensionally stable and bioactive membrane for guided bone regeneration: an in vitro study publication-title: J Biomed Mater Res B doi: 10.1002/jbm.b.33430 – volume: 14 start-page: 3319 issue: 12 year: 2021 ident: e_1_2_10_106_1 article-title: Biomaterials for periodontal and peri‐implant Regeneration publication-title: Materials doi: 10.3390/ma14123319 – volume: 18 start-page: 213 year: 2022 ident: e_1_2_10_145_1 article-title: Polydopamine‐mediated graphene oxide and nanohydroxyapatite‐incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes publication-title: Bioact Mater – volume: 155 start-page: 1282 issue: 6 year: 2013 ident: e_1_2_10_66_1 article-title: A special population of regulatory T cells potentiates muscle repair publication-title: Cell doi: 10.1016/j.cell.2013.10.054 – volume: 244 year: 2024 ident: e_1_2_10_123_1 article-title: Developing a multifunctional gradient pore structure Janus membrane loaded with MB@ZIF‐8 nanoparticles and hydroxyapatite for guided periodontal bone regeneration publication-title: Mater Des doi: 10.1016/j.matdes.2024.113126 – volume: 11 start-page: 825 issue: 5 year: 2005 ident: e_1_2_10_137_1 article-title: Alignment of osteoblast‐like cells and cell‐produced collagen matrix induced by nanogrooves publication-title: Tissue Eng – volume: 7 start-page: 72 issue: 1 year: 2024 ident: e_1_2_10_162_1 article-title: Fishnet‐inspired 3D scaffold fabricated from mesh‐like electrospun membranes promoted osteoporotic bone regeneration publication-title: Adv Fiber Mater doi: 10.1007/s42765-024-00451-3 – volume: 61 year: 2025 ident: e_1_2_10_220_1 article-title: Smart multifunctional Cu2O@RuO2 nanozyme for angiogenesis and osteogenesis in periodontitis publication-title: Nano Today doi: 10.1016/j.nantod.2024.102624 – volume: 33 start-page: 3792 issue: 15 year: 2012 ident: e_1_2_10_58_1 article-title: Macrophage polarization: an opportunity for improved outcomes in and regenerative medicine publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.02.034 – volume: 13 issue: 1 year: 2018 ident: e_1_2_10_164_1 article-title: Porosity effect of 3D‐printed polycaprolactone membranes on calvarial defect model for guided bone regeneration publication-title: Biomed Mater doi: 10.1088/1748-605X/aa9bbc – volume: 43 start-page: 75 issue: 1 year: 2014 ident: e_1_2_10_24_1 article-title: High‐density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review publication-title: Int J Oral Surg doi: 10.1016/j.ijom.2013.05.017 – volume: 22 year: 2021 ident: e_1_2_10_218_1 article-title: Multifunctional SDF‐1‐loaded hydroxyapatite/polylactic acid membranes promote cell recruitment, immunomodulation, angiogenesis, and osteogenesis for biomimetic bone regeneration publication-title: Appl Mater Today doi: 10.1016/j.apmt.2021.100942 – volume: 52 start-page: 135 issue: 1 year: 2017 ident: e_1_2_10_87_1 article-title: Human periodontal ligament stem cells suppress T‐cell proliferation via down‐regulation of non‐classical major histocompatibility complex‐like glycoprotein CD1b on dendritic cells publication-title: J Periodontal Res doi: 10.1111/jre.12378 – volume: 10 year: 2022 ident: e_1_2_10_104_1 article-title: Roles of the fibroblast growth factor signal transduction system in tissue injury repair publication-title: Burns Trauma doi: 10.1093/burnst/tkac005 – volume: 10 year: 2023 ident: e_1_2_10_121_1 article-title: Barrier membranes for periodontal guided bone regeneration: a potential therapeutic strategy publication-title: Fronti Mater doi: 10.3389/fmats.2023.1220420 – volume: 5 start-page: 1 issue: 1 year: 2020 ident: e_1_2_10_163_1 article-title: Porous scaffolds for bone regeneration publication-title: J Sci:Adv Mater Devices – volume: 11 year: 2021 ident: e_1_2_10_74_1 article-title: The role of neutrophil extracellular traps in periodontitis publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2021.639144 – volume: 8 start-page: 115 issue: 4 year: 2016 ident: e_1_2_10_25_1 article-title: Biodegradable polymer membranes applied in guided bone/tissue Regeneration: a review publication-title: Polymers doi: 10.3390/polym8040115 – volume: 9 start-page: 5191 year: 2018 ident: e_1_2_10_45_1 article-title: Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice publication-title: Nat Commun doi: 10.1038/s41467-018-07666-0 – volume: 25 start-page: 4510 issue: 8 year: 2024 ident: e_1_2_10_71_1 article-title: Differential response of human dendritic cells upon stimulation with encapsulated or non‐encapsulated isogenic strains of Porphyromonas gingivalis publication-title: Int J Mol Sci doi: 10.3390/ijms25084510 – volume: 286 year: 2022 ident: e_1_2_10_215_1 article-title: Immunomodulatory strategies for bone regeneration: a review from the perspective of disease types publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121604 – volume: 14 year: 2023 ident: e_1_2_10_109_1 article-title: NADPH‐dependent ROS accumulation contributes to the impaired osteogenic differentiation of periodontal ligament stem cells under high glucose conditions publication-title: Front Endocrinol doi: 10.3389/fendo.2023.1152845 – volume: 58 year: 2024 ident: e_1_2_10_209_1 article-title: A self‐powered electret nanogenerator coordinates nerve‐ and bone‐repair microenvironments for bone regeneration publication-title: Nano Today doi: 10.1016/j.nantod.2024.102430 – volume: 59 start-page: 167 issue: 2 year: 2014 ident: e_1_2_10_88_1 article-title: Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro‐inflammatory cytokine production in human periodontal ligament stem cells publication-title: Arch Oral Biol doi: 10.1016/j.archoralbio.2013.11.008 – volume: 29 start-page: 32 year: 2018 ident: e_1_2_10_90_1 article-title: Effects of soft tissue augmentation procedures on peri‐implant health or disease: a systematic review and meta‐analysis publication-title: Clin Oral Implants Res doi: 10.1111/clr.13114 – volume: 19 start-page: 15345 issue: 16 year: 2025 ident: e_1_2_10_98_1 article-title: Engineered macrophage membrane‐camouflaged nanodecoys reshape the infectious microenvironment for efficient periodontitis treatment publication-title: ACS Nano doi: 10.1021/acsnano.4c14305 – volume: 12 year: 2022 ident: e_1_2_10_214_1 article-title: Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2022.908859 – volume: 99 start-page: 4805 issue: 12 year: 2010 ident: e_1_2_10_230_1 article-title: A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles publication-title: J Pharm Sci doi: 10.1002/jps.22189 – volume: 15 start-page: 1097 issue: 5 year: 2019 ident: e_1_2_10_228_1 article-title: Development of an antibacterial bone graft by immobilization of levofloxacin hydrochloride‐loaded mesoporous silica microspheres on a porous scaffold surface publication-title: J Biomed Nanotechnol doi: 10.1166/jbn.2019.2743 – volume: 29 start-page: 1515 issue: 11 year: 2022 ident: e_1_2_10_46_1 article-title: Reciprocal regulation of mesenchymal stem cells and immune responses publication-title: Cell Stem Cell doi: 10.1016/j.stem.2022.10.001 – volume: 276 year: 2021 ident: e_1_2_10_224_1 article-title: Mussel patterned with 4D biodegrading elastomer durably recruits regenerative macrophages to promote regeneration of craniofacial bone publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120998 – volume: 93 start-page: 9 issue: 1 year: 2023 ident: e_1_2_10_14_1 article-title: Guided bone regeneration in implant dentistry: basic principle, progress over 35 years, and recent research activities publication-title: Periodontol 2000 doi: 10.1111/prd.12539 – volume: 29 start-page: 1161 issue: 8 year: 2022 ident: e_1_2_10_91_1 article-title: Wound healing, fibroblast heterogeneity, and fibrosis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2022.07.006 – volume: 11 start-page: 667 issue: 5 year: 1996 ident: e_1_2_10_38_1 article-title: A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications publication-title: Int J Oral Maxillofac Implants – volume: 23 start-page: 1502 issue: 23 year: 2017 ident: e_1_2_10_169_1 article-title: Engineering membranes for bone regeneration publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2017.0094 – volume: 226 year: 2023 ident: e_1_2_10_31_1 article-title: Underestimated microbial infection of resorbable membranes on guided regeneration publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2023.113318 – volume: 23 start-page: 225 issue: 1 year: 2025 ident: e_1_2_10_5_1 article-title: Mediation of systemic inflammation response index in the association of healthy eating index‐2020 in patient is with periodontitis publication-title: Oral Hlth Prev Dent – volume: 35 start-page: 101 issue: 1 year: 2004 ident: e_1_2_10_92_1 article-title: Antigens of bacteria associated with periodontitis publication-title: Periodontol 2000 doi: 10.1111/j.0906-6713.2004.003559.x – volume: 39 start-page: 400 issue: 4 year: 2012 ident: e_1_2_10_202_1 article-title: Atmospheric plasma enhances wettability and cell spreading on dental implant metals publication-title: J Clin Periodontol doi: 10.1111/j.1600-051X.2012.01853.x – volume: 30 start-page: 1175 issue: 5 year: 2015 ident: e_1_2_10_156_1 article-title: An experimental study on guided bone Regeneration using a polylactide‐co‐glycolide membrane‐immobilized conditioned medium publication-title: Int J Oral Maxillofac Implants doi: 10.11607/jomi.3915 – volume: 10 start-page: 3491 year: 2019 ident: e_1_2_10_166_1 article-title: Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano‐responsiveness in 3D publication-title: Nat Commun doi: 10.1038/s41467-019-11397-1 – volume: 14 start-page: 7687 issue: 1 year: 2023 ident: e_1_2_10_239_1 article-title: Occlusive membranes for guided regeneration of inflamed tissue defects publication-title: Nat Commun doi: 10.1038/s41467-023-43428-3 – volume: 19 start-page: 151 year: 1999 ident: e_1_2_10_21_1 article-title: Localized ridge augmentation with autografts and barrier membranes publication-title: Periodontol 2000 doi: 10.1111/j.1600-0757.1999.tb00153.x – volume: 67 start-page: 1218 issue: 6 year: 2009 ident: e_1_2_10_22_1 article-title: Barrier membranes used for ridge augmentation: is there an optimal pore size? publication-title: J Oral Maxillofac Surg doi: 10.1016/j.joms.2008.11.022 – volume: 178 year: 2021 ident: e_1_2_10_79_1 article-title: Local delivery strategies to restore immune homeostasis in the context of inflammation publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2021.113971 – volume: 222 year: 2023 ident: e_1_2_10_108_1 article-title: Multifunctional barrier membranes promote bone regeneration by scavenging H2O2, generating O2, eliminating inflammation, and regulating immune response publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2023.113147 – volume: 24 start-page: 824 issue: 9 year: 2016 ident: e_1_2_10_158_1 article-title: Guiding bone regeneration using hydrophobized silk fibroin nanofiber membranes publication-title: Macromol Res doi: 10.1007/s13233-016-4109-2 – volume: 8 start-page: 1339 issue: 9 year: 2019 ident: e_1_2_10_97_1 article-title: Importance of virulence factors for the persistence of Oral bacteria in the inflamed gingival crevice and in the pathogenesis of periodontal disease publication-title: J Clin Med doi: 10.3390/jcm8091339 – volume: 11 year: 2021 ident: e_1_2_10_76_1 article-title: Interactions between neutrophils and periodontal pathogens in late‐onset periodontitis publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2021.627328 – volume: 198 year: 2021 ident: e_1_2_10_191_1 article-title: Ca ions chelation, collagen I incorporation and 3D bionic PLGA/PCL electrospun architecture to enhance osteogenic differentiation publication-title: Mater Des doi: 10.1016/j.matdes.2020.109300 – volume: 96 start-page: 349 issue: 2 year: 2014 ident: e_1_2_10_73_1 article-title: B cells promote obesity‐associated periodontitis and oral pathogen‐associated inflammation publication-title: J Leukoc Biol doi: 10.1189/jlb.4A0214-095R – volume: 21 start-page: 3283 issue: 9 year: 2020 ident: e_1_2_10_81_1 article-title: Spatiotemporal regulation of signaling: focus on T cell activation and the immunological synapse publication-title: Int J Mol Sci doi: 10.3390/ijms21093283 – volume: 130 year: 2024 ident: e_1_2_10_199_1 article-title: Synergistic effect of electrophysiological microenvironment and bioactive ions for enhancing bone regeneration publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.110113 – volume: 13 issue: 29 year: 2024 ident: e_1_2_10_160_1 article-title: Cellular scale curvature in bioceramic scaffolds enhanced bone regeneration by regulating skeletal stem cells and vascularization publication-title: Adv Healthc Mater doi: 10.1002/adhm.202401667 – volume: 16 start-page: 36077 issue: 28 year: 2024 ident: e_1_2_10_101_1 article-title: ZIF‐8‐based nanoparticles for Inflammation treatment and oxidative stress reduction in periodontitis publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.4c05722 – volume: 19 start-page: 7751 year: 2024 ident: e_1_2_10_193_1 article-title: Bioactive materials that promote the homing of endogenous mesenchymal stem cells to improve wound healing publication-title: Int J Nanomedicine doi: 10.2147/IJN.S455469 – volume: 12 start-page: 1545 issue: 7 year: 2018 ident: e_1_2_10_140_1 article-title: Using biomimetically mineralized collagen membranes with different surface stiffness to guide regeneration of bone defects publication-title: J Tissue Eng Regen Med doi: 10.1002/term.2670 – ident: e_1_2_10_8_1 doi: 10.1111/prd.12619 – volume: 6 start-page: 1187 issue: 10 year: 2011 ident: e_1_2_10_34_1 article-title: Polymeric membranes for guided bone regeneration publication-title: Biotechnol J doi: 10.1002/biot.201100294 – volume: 108 start-page: 350 issue: 3 year: 2020 ident: e_1_2_10_70_1 article-title: IL‐10 secreting B cells regulate periodontal immune response during periodontitis publication-title: Odontology doi: 10.1007/s10266-019-00470-2 – volume: 23 start-page: 1132 issue: 19 year: 2017 ident: e_1_2_10_153_1 article-title: Bone morphogenetic protein 2 alters osteogenesis and anti‐inflammatory profiles of mesenchymal stem cells induced by microtextured titanium in vitro publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2017.0003 – volume: 5 start-page: 36 issue: 1 year: 2023 ident: e_1_2_10_176_1 article-title: Guided bone regeneration in long‐bone defect with a bilayer mineralized collagen membrane publication-title: Collagen Leather doi: 10.1186/s42825-023-00144-4 – volume: 21 start-page: 4945 issue: 12 year: 2020 ident: e_1_2_10_189_1 article-title: Dual oral tissue adhesive nanofiber membranes for pH‐responsive delivery of antimicrobial peptides publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c01163 – volume: 10 year: 2022 ident: e_1_2_10_84_1 article-title: Stem cell homing in periodontal tissue regeneration publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2022.1017613 – volume: 49 start-page: 85 year: 2025 ident: e_1_2_10_204_1 article-title: From hard tissues to beyond: progress and challenges of strontium‐containing biomaterials in regenerative medicine applications publication-title: Bioact Mater – volume: 86 start-page: 157 issue: 1 year: 2021 ident: e_1_2_10_43_1 article-title: Maintaining homeostatic control of periodontal bone tissue publication-title: Periodontol 2000 doi: 10.1111/prd.12368 – volume: 11 year: 2023 ident: e_1_2_10_159_1 article-title: Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2023.1117954 – volume: 18 start-page: 2151 issue: 9 year: 2014 ident: e_1_2_10_229_1 article-title: Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria publication-title: Clin Oral Investig doi: 10.1007/s00784-014-1201-x – volume: 12 start-page: 5032 issue: 1 year: 2022 ident: e_1_2_10_67_1 article-title: Local induction of regulatory T cells prevents inflammatory bone loss in ligature‐induced experimental periodontitis in mice publication-title: Sci Rep doi: 10.1038/s41598-022-09150-8 – volume: 95 start-page: 319 issue: 3 year: 2016 ident: e_1_2_10_154_1 article-title: Topography influences adherent cell regulation of Osteoclastogenesis publication-title: J Dent Res doi: 10.1177/0022034515616760 – volume: 24 year: 2024 ident: e_1_2_10_227_1 article-title: A multifunctional quercetin/polycaprolactone electrospun fibrous membrane for periodontal bone regeneration publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2023.100906 – volume: 46 start-page: 52 year: 2019 ident: e_1_2_10_116_1 article-title: Osteoimmunology: inflammatory osteolysis and regeneration of the alveolar bone publication-title: J Clin Periodontol doi: 10.1111/jcpe.13056 – volume: 51 start-page: 233 issue: 2 year: 2024 ident: e_1_2_10_69_1 article-title: Interleukin‐17 alleviates erastin‐induced alveolar bone loss by suppressing ferroptosis via interaction between NRF2 and p‐STAT3 publication-title: J Clin Periodontol doi: 10.1111/jcpe.13898 – volume: 9 start-page: 701 year: 2018 ident: e_1_2_10_68_1 article-title: Host defense against oral microbiota by bone‐damaging T cells publication-title: Nat Commun doi: 10.1038/s41467-018-03147-6 – volume: 93 start-page: 254 issue: 1 year: 2023 ident: e_1_2_10_17_1 article-title: Do autologous platelet concentrates (APCs) have a role in intra‐oral bone regeneration? A critical review of clinical guidelines on decision‐making process publication-title: Periodontol 2000 doi: 10.1111/prd.12526 – volume: 8 start-page: 56 year: 2014 ident: e_1_2_10_170_1 article-title: Mechanisms of guided bone regeneration: a review publication-title: Open Dent J doi: 10.2174/1874210601408010056 – volume: 489 year: 2025 ident: e_1_2_10_186_1 article-title: Glycated walnut peptide‐calcium chelates: structural properties, calcium absorption enhancement mechanism, and osteogenic effects publication-title: Food Chem doi: 10.1016/j.foodchem.2025.145039 – volume: 9 year: 2021 ident: e_1_2_10_95_1 article-title: Periodontal Inflammation‐triggered by periodontal ligament stem cell Pyroptosis exacerbates periodontitis publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.663037 – volume: 93 start-page: 1445 issue: 10 year: 2022 ident: e_1_2_10_3_1 article-title: Global, regional, and national burden of periodontitis from 1990 to 2019: results from the global burden of disease study 2019 publication-title: J Periodontol doi: 10.1002/JPER.21-0469 – volume: 1 start-page: 46 year: 1993 ident: e_1_2_10_20_1 article-title: Clinical applications of guided tissue regeneration: surgical considerations publication-title: Periodontol 2000 doi: 10.1111/j.1600-0757.1993.tb00206.x – volume: 26 start-page: 229 issue: 2 year: 2011 ident: e_1_2_10_48_1 article-title: The amazing osteocyte publication-title: J Bone Miner Res doi: 10.1002/jbmr.320 – volume: 6 start-page: 1007 issue: 5 year: 2018 ident: e_1_2_10_133_1 article-title: The osteoimmunomodulatory property of a barrier collagen membrane and its manipulation via coating nanometer‐sized bioactive glass to improve guided bone regeneration publication-title: Biomater Sci doi: 10.1039/C7BM00869D – volume: 8 issue: 3 year: 2023 ident: e_1_2_10_190_1 article-title: Cell recognitive bioadhesive‐based osteogenic barrier coating with localized delivery of bone morphogenetic protein‐2 for accelerated guided bone regeneration publication-title: Bioeng Transl Med doi: 10.1002/btm2.10493 – volume: 66 start-page: 1 issue: 1 year: 2022 ident: e_1_2_10_53_1 article-title: Biological basis of periodontal Regeneration publication-title: Dent Clin N Am doi: 10.1016/j.cden.2021.08.001 – volume: 94 start-page: 112 year: 2019 ident: e_1_2_10_143_1 article-title: Nano‐scale modification of titanium implant surfaces to enhance osseointegration publication-title: Acta Biomater doi: 10.1016/j.actbio.2019.05.045 – volume: 19 start-page: 2917 year: 2024 ident: e_1_2_10_100_1 article-title: Electrospun L‐lysine/amorphous calcium phosphate loaded Core‐sheath nanofibers for managing Oral biofilm infections and promoting periodontal tissue repairment publication-title: Int J Nanomedicine doi: 10.2147/IJN.S453702 – volume: 14 start-page: 44111 issue: 39 year: 2022 ident: e_1_2_10_147_1 article-title: Enhanced cell osteogenesis and osteoimmunology regulated by piezoelectric biomaterials with controllable surface potential and charges publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c11131 – volume: 11 issue: 46 year: 2024 ident: e_1_2_10_195_1 article-title: Bmi‐1 epigenetically orchestrates osteogenic and Adipogenic differentiation of bone marrow mesenchymal stem cells to delay bone aging publication-title: Adv Sci doi: 10.1002/advs.202404518 – volume: 51 start-page: 7476 issue: 13 year: 2017 ident: e_1_2_10_36_1 article-title: Enzymatic hydrolysis of polyester thin films at the nanoscale: effects of polyester structure and enzyme active‐site accessibility publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b01330 – volume: 31 issue: 37 year: 2021 ident: e_1_2_10_120_1 article-title: Sculpting bio‐inspired surface textures: an adhesive Janus periosteum publication-title: Adv Funct Mater doi: 10.1002/adfm.202104636 – volume: 20 start-page: 1293 issue: 14 year: 1999 ident: e_1_2_10_136_1 article-title: The effect of poly‐L‐lactic acid with parallel surface micro groove on osteoblast‐like cells in vitro publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00029-0 – volume: 16 start-page: 3075 issue: 18 year: 2024 ident: e_1_2_10_96_1 article-title: Akkermansia muciniphila as a potential Guardian against oral health diseases: a narrative review publication-title: Nutrients doi: 10.3390/nu16183075 – volume: 23 start-page: 141 issue: 1 year: 2025 ident: e_1_2_10_113_1 article-title: The effect of patient‐related factors age, sex, implant location, and periodontitis on crestal bone loss in the posterior ridge: a retrospective study publication-title: Oral Hlth Prev Dent – volume: 8 issue: 8 year: 2024 ident: e_1_2_10_182_1 article-title: Application of bioactive materials for osteogenic function in bone tissue engineering publication-title: Small Methods doi: 10.1002/smtd.202301283 – volume: 450 year: 2022 ident: e_1_2_10_126_1 article-title: 3D printed long‐term structurally stable bioceramic dome scaffolds with controllable biodegradation favorable for guided bone regeneration publication-title: Chem Eng J doi: 10.1016/j.cej.2022.138003 – ident: e_1_2_10_10_1 doi: 10.1111/prd.12568 – volume: 287 start-page: 226 issue: 1 year: 2019 ident: e_1_2_10_75_1 article-title: Primary immunodeficiencies reveal the essential role of tissue neutrophils in periodontitis publication-title: Immunol Rev doi: 10.1111/imr.12724 – volume: 11 start-page: rbae058 year: 2024 ident: e_1_2_10_222_1 article-title: Polyphenols‐based intelligent oral barrier membranes for periodontal bone defect reconstruction publication-title: Regener Biomater doi: 10.1093/rb/rbae058 – volume: 8 start-page: 20739 issue: 23 year: 2023 ident: e_1_2_10_80_1 article-title: Rapamycin inhibits Osteoclastogenesis and prevents LPS‐induced alveolar bone loss by oxidative stress suppression publication-title: ACS Omega doi: 10.1021/acsomega.3c01289 – volume: 36 start-page: 258 issue: 3 year: 2009 ident: e_1_2_10_11_1 article-title: Regenerative potential and healing dynamics of the periodontium: a critical‐size supra‐alveolar periodontal defect study publication-title: J Clin Periodontol doi: 10.1111/j.1600-051X.2008.01369.x – volume: 89 start-page: 164 issue: 2 year: 2000 ident: e_1_2_10_23_1 article-title: Efficacy of high‐density versus semipermeable PTFE membranes in an elderly experimental model publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod doi: 10.1067/moe.2000.98922 – volume: 96 start-page: 281 issue: 1 year: 2024 ident: e_1_2_10_102_1 article-title: Inflammation indices in association with periodontitis and cancer publication-title: Periodontol 2000 doi: 10.1111/prd.12612 – volume: 13 start-page: 89 issue: 1 year: 2023 ident: e_1_2_10_82_1 article-title: Polysulfone membranes doped with human neutrophil elastase inhibitors: assessment of bioactivity and biocompatibility publication-title: Membranes doi: 10.3390/membranes13010089 – volume: 260 year: 2021 ident: e_1_2_10_179_1 article-title: Electrospun polyamide‐6/chitosan nanofibers reinforced nano‐hydroxyapatite/polyamide‐6 composite bilayered membranes for guided bone regeneration publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2021.117769 – volume: 13 issue: 12 year: 2024 ident: e_1_2_10_192_1 article-title: Hierarchical scaffold with directional microchannels promotes cell ingrowth for bone Regeneration publication-title: Adv Healthc Mater doi: 10.1002/adhm.202303600 – volume: 18 start-page: 1 year: 2018 ident: e_1_2_10_77_1 article-title: Characterization of oral polymorphonuclear neutrophils in periodontitis patients: a case‐control study publication-title: BMC Oral Health – volume: 7 issue: 19 year: 2018 ident: e_1_2_10_151_1 article-title: Unveiling the mechanism of surface hydrophilicity‐modulated macrophage polarization publication-title: Adv Healthc Mater doi: 10.1002/adhm.201800675 |
| SSID | ssj0017935 |
| Score | 2.458158 |
| SecondaryResourceType | review_article online_first |
| Snippet | Guided tissue regeneration (GTR) and guided bone regeneration (GBR) membranes are critical for reconstructing periodontal/bone defects, but existing membranes... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| Title | Functional requirements for guided bone regeneration/guided tissue regeneration membrane design: Progress and challenges |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41221631 https://www.proquest.com/docview/3271086071 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1600-0757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017935 issn: 0906-6713 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF7RFtFeEO-GR7UgbpVFvHa8a26IEnGooqhqpdwiex9pEHGiJEbh3zOzD9s5RIIDFyvacezsfJPZmd15EPKxb7COF9MRB9crSrO-iMokVxE2u9Ki0EIlrtkEH43EZJKPffz8xrYT4FUldrt89V-hhjEAG1Nn_wHu5qEwAJ8BdLgC7HD9K-CHsFL5Db61xjhf7bLYMJ5wVs8VmpzLCrulzGzJaRvdwYaetLVA7BEvF3oBPnWFGVYY7oGbCGMM60IladPiQkOWTdfUHcNkweettq7KEybrdHep7ZpXz3_WzR6PbS98eVPPf4DIzu5bsR25ztrF8r5YhrFrPzb_7e_zOxdsgCl8PmZaO22bYVo7dxWqD-hyrIOJZ-N59x6Y6Gph8UtjxsCkjNvlrAkyDKQjcsL4IAeVd3J1M7y7bg6ZQDUNfLEpDO5q3nRGHoXv7lsrB1wQa4rcPiGPvQ9Bvzjsn5IHunpGTq8w7gtb9z0nu1YGaFcGKMgAdUBTlAHahfmTJzgJ2CPRIAHUScBnGvCngD9t8X9B7obfbr9-j3yLjUjGGdtGSb-U4JOmWshY8jIThiVp2S9kVqqEKW0U5zlPuMhlKaQyUvAyVpmAvz43RuvkJTmu4PeeExqzzKhUxUabQSqlyVVRSHiwAJu5YIXpkQ-BldOVq6QyDR4osH5qWd8j7wOTp6Dn8PAKJresN9OEcWwKBhZxj7xy3G8eE9B6fZDyhpy1EviWHG_XtX5HHspfwNP1BTniE3HhxeMPKjOAkg |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+requirements+for+guided+bone+regeneration%2Fguided+tissue+regeneration+membrane+design%3A+Progress+and+challenges&rft.jtitle=Periodontology+2000&rft.au=Zhan%2C+Huilu&rft.au=Shi%2C+Ruijianghan&rft.au=Ni%2C+Haohao&rft.au=Li%2C+Haiyan&rft.date=2025-11-12&rft.eissn=1600-0757&rft_id=info:doi/10.1111%2Fprd.70019&rft_id=info%3Apmid%2F41221631&rft.externalDocID=41221631 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0906-6713&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0906-6713&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0906-6713&client=summon |