Functional requirements for guided bone regeneration/guided tissue regeneration membrane design: Progress and challenges

Guided tissue regeneration (GTR) and guided bone regeneration (GBR) membranes are critical for reconstructing periodontal/bone defects, but existing membranes face limitations in osteogenic potential, antibacterial efficacy, degradation kinetics, mechanical stability, and immunomodulation within the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Periodontology 2000
Hlavní autoři: Zhan, Huilu, Shi, Ruijianghan, Ni, Haohao, Li, Haiyan, Yuan, Changyong, Lin, Kaili, Sculean, Anton, Miron, Richard J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Denmark 12.11.2025
Témata:
ISSN:0906-6713, 1600-0757, 1600-0757
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Guided tissue regeneration (GTR) and guided bone regeneration (GBR) membranes are critical for reconstructing periodontal/bone defects, but existing membranes face limitations in osteogenic potential, antibacterial efficacy, degradation kinetics, mechanical stability, and immunomodulation within the complex oral microenvironment. This review aims to explore cellular interactions between alveolar bone regenerative cells and GBR/GTR membranes, membrane design strategies based on biological functions, and advancements in material engineering to overcome current clinical challenges. A comprehensive search strategy was implemented across PubMed, Scopus, Web of Science databases, as well as clinical trials registers. Data pertinent to membrane synthetic methodology, biological behavior, tissue regeneration outcomes were retrieved from the original studies. A qualitative assessment was performed. Overall, ideal GBR/GTR membranes must meet several functional requirements: (i) Clinical necessities include biocompatibility, selective permeability for nutrient exchange, and clinical operability. GTR aims to create and maintain a stable isolated space to protect blood clots, thereby enabling blood clots and the newly formed tissue to effectively block the migration of epithelial cells. GBR demands rigid space maintenance to resist mucosal compression in edentulous ridges, with greater emphasis on mechanical stability for large bone defects. Degradation kinetics must align with slower bone formation (3–6 months). (ii) Appropriate surface properties (roughness, morphology, stiffness, wettability, charge) and porosity/pore size are critical for cell behavior. (iii) Membrane‐based biological regulation can promote cell adhesion and migration, and balance osteoclastogenesis and osteogenesis. Optimization strategies include incorporating bioactive substances for bone regeneration, immunomodulatory agents for anti‐inflammatory responses, and antibacterial additives for clinical performance. GBR/GTR membranes require multifunctional integration of barrier functionality, tailored biodegradation, mechanical robustness, and proactive bioactivity (osteogenic, angiogenic, immunomodulatory, and antibacterial). Future designs must prioritize understanding cell‐material interactions to develop membranes that dynamically synchronize with the regenerative microenvironment. This review provides a foundation for developing next‐generation membranes that effectively address complex oral microenvironment challenges and significantly improve clinical outcomes in bone defect reconstruction. Optimized membranes will enhance space maintenance, reduce infection rates, mitigate premature degradation, and improve predictability in reconstructing periodontal and alveolar bone defects, ultimately advancing regenerative outcomes in implant dentistry and periodontal surgery.
AbstractList Guided tissue regeneration (GTR) and guided bone regeneration (GBR) membranes are critical for reconstructing periodontal/bone defects, but existing membranes face limitations in osteogenic potential, antibacterial efficacy, degradation kinetics, mechanical stability, and immunomodulation within the complex oral microenvironment. This review aims to explore cellular interactions between alveolar bone regenerative cells and GBR/GTR membranes, membrane design strategies based on biological functions, and advancements in material engineering to overcome current clinical challenges. A comprehensive search strategy was implemented across PubMed, Scopus, Web of Science databases, as well as clinical trials registers. Data pertinent to membrane synthetic methodology, biological behavior, tissue regeneration outcomes were retrieved from the original studies. A qualitative assessment was performed. Overall, ideal GBR/GTR membranes must meet several functional requirements: (i) Clinical necessities include biocompatibility, selective permeability for nutrient exchange, and clinical operability. GTR aims to create and maintain a stable isolated space to protect blood clots, thereby enabling blood clots and the newly formed tissue to effectively block the migration of epithelial cells. GBR demands rigid space maintenance to resist mucosal compression in edentulous ridges, with greater emphasis on mechanical stability for large bone defects. Degradation kinetics must align with slower bone formation (3-6 months). (ii) Appropriate surface properties (roughness, morphology, stiffness, wettability, charge) and porosity/pore size are critical for cell behavior. (iii) Membrane-based biological regulation can promote cell adhesion and migration, and balance osteoclastogenesis and osteogenesis. Optimization strategies include incorporating bioactive substances for bone regeneration, immunomodulatory agents for anti-inflammatory responses, and antibacterial additives for clinical performance. GBR/GTR membranes require multifunctional integration of barrier functionality, tailored biodegradation, mechanical robustness, and proactive bioactivity (osteogenic, angiogenic, immunomodulatory, and antibacterial). Future designs must prioritize understanding cell-material interactions to develop membranes that dynamically synchronize with the regenerative microenvironment. This review provides a foundation for developing next-generation membranes that effectively address complex oral microenvironment challenges and significantly improve clinical outcomes in bone defect reconstruction. Optimized membranes will enhance space maintenance, reduce infection rates, mitigate premature degradation, and improve predictability in reconstructing periodontal and alveolar bone defects, ultimately advancing regenerative outcomes in implant dentistry and periodontal surgery.
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) membranes are critical for reconstructing periodontal/bone defects, but existing membranes face limitations in osteogenic potential, antibacterial efficacy, degradation kinetics, mechanical stability, and immunomodulation within the complex oral microenvironment. This review aims to explore cellular interactions between alveolar bone regenerative cells and GBR/GTR membranes, membrane design strategies based on biological functions, and advancements in material engineering to overcome current clinical challenges. A comprehensive search strategy was implemented across PubMed, Scopus, Web of Science databases, as well as clinical trials registers. Data pertinent to membrane synthetic methodology, biological behavior, tissue regeneration outcomes were retrieved from the original studies. A qualitative assessment was performed. Overall, ideal GBR/GTR membranes must meet several functional requirements: (i) Clinical necessities include biocompatibility, selective permeability for nutrient exchange, and clinical operability. GTR aims to create and maintain a stable isolated space to protect blood clots, thereby enabling blood clots and the newly formed tissue to effectively block the migration of epithelial cells. GBR demands rigid space maintenance to resist mucosal compression in edentulous ridges, with greater emphasis on mechanical stability for large bone defects. Degradation kinetics must align with slower bone formation (3-6 months). (ii) Appropriate surface properties (roughness, morphology, stiffness, wettability, charge) and porosity/pore size are critical for cell behavior. (iii) Membrane-based biological regulation can promote cell adhesion and migration, and balance osteoclastogenesis and osteogenesis. Optimization strategies include incorporating bioactive substances for bone regeneration, immunomodulatory agents for anti-inflammatory responses, and antibacterial additives for clinical performance. GBR/GTR membranes require multifunctional integration of barrier functionality, tailored biodegradation, mechanical robustness, and proactive bioactivity (osteogenic, angiogenic, immunomodulatory, and antibacterial). Future designs must prioritize understanding cell-material interactions to develop membranes that dynamically synchronize with the regenerative microenvironment. This review provides a foundation for developing next-generation membranes that effectively address complex oral microenvironment challenges and significantly improve clinical outcomes in bone defect reconstruction. Optimized membranes will enhance space maintenance, reduce infection rates, mitigate premature degradation, and improve predictability in reconstructing periodontal and alveolar bone defects, ultimately advancing regenerative outcomes in implant dentistry and periodontal surgery.Guided tissue regeneration (GTR) and guided bone regeneration (GBR) membranes are critical for reconstructing periodontal/bone defects, but existing membranes face limitations in osteogenic potential, antibacterial efficacy, degradation kinetics, mechanical stability, and immunomodulation within the complex oral microenvironment. This review aims to explore cellular interactions between alveolar bone regenerative cells and GBR/GTR membranes, membrane design strategies based on biological functions, and advancements in material engineering to overcome current clinical challenges. A comprehensive search strategy was implemented across PubMed, Scopus, Web of Science databases, as well as clinical trials registers. Data pertinent to membrane synthetic methodology, biological behavior, tissue regeneration outcomes were retrieved from the original studies. A qualitative assessment was performed. Overall, ideal GBR/GTR membranes must meet several functional requirements: (i) Clinical necessities include biocompatibility, selective permeability for nutrient exchange, and clinical operability. GTR aims to create and maintain a stable isolated space to protect blood clots, thereby enabling blood clots and the newly formed tissue to effectively block the migration of epithelial cells. GBR demands rigid space maintenance to resist mucosal compression in edentulous ridges, with greater emphasis on mechanical stability for large bone defects. Degradation kinetics must align with slower bone formation (3-6 months). (ii) Appropriate surface properties (roughness, morphology, stiffness, wettability, charge) and porosity/pore size are critical for cell behavior. (iii) Membrane-based biological regulation can promote cell adhesion and migration, and balance osteoclastogenesis and osteogenesis. Optimization strategies include incorporating bioactive substances for bone regeneration, immunomodulatory agents for anti-inflammatory responses, and antibacterial additives for clinical performance. GBR/GTR membranes require multifunctional integration of barrier functionality, tailored biodegradation, mechanical robustness, and proactive bioactivity (osteogenic, angiogenic, immunomodulatory, and antibacterial). Future designs must prioritize understanding cell-material interactions to develop membranes that dynamically synchronize with the regenerative microenvironment. This review provides a foundation for developing next-generation membranes that effectively address complex oral microenvironment challenges and significantly improve clinical outcomes in bone defect reconstruction. Optimized membranes will enhance space maintenance, reduce infection rates, mitigate premature degradation, and improve predictability in reconstructing periodontal and alveolar bone defects, ultimately advancing regenerative outcomes in implant dentistry and periodontal surgery.
Author Zhan, Huilu
Yuan, Changyong
Miron, Richard J.
Lin, Kaili
Li, Haiyan
Shi, Ruijianghan
Sculean, Anton
Ni, Haohao
Author_xml – sequence: 1
  givenname: Huilu
  surname: Zhan
  fullname: Zhan, Huilu
  organization: Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Department of Stomatology, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
– sequence: 2
  givenname: Ruijianghan
  surname: Shi
  fullname: Shi, Ruijianghan
  organization: Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
– sequence: 3
  givenname: Haohao
  surname: Ni
  fullname: Ni, Haohao
  organization: The First School of Clinical Medicine Zhejiang Chinese Medical University Hangzhou China
– sequence: 4
  givenname: Haiyan
  surname: Li
  fullname: Li, Haiyan
  organization: Biomedical Engineering Department, School of Engineering, STEM College RMIT University Melbourne Victoria Australia
– sequence: 5
  givenname: Changyong
  surname: Yuan
  fullname: Yuan, Changyong
  organization: School of Stomatology, Xuzhou Medical University Affiliated Stomatological Hospital of Xuzhou Medical University Xuzhou China
– sequence: 6
  givenname: Kaili
  orcidid: 0000-0002-1900-9641
  surname: Lin
  fullname: Lin, Kaili
  organization: Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
– sequence: 7
  givenname: Anton
  orcidid: 0000-0003-2836-5477
  surname: Sculean
  fullname: Sculean, Anton
  organization: Department of Periodontology University of Bern Bern Switzerland
– sequence: 8
  givenname: Richard J.
  orcidid: 0000-0003-3290-3418
  surname: Miron
  fullname: Miron, Richard J.
  organization: Department of Periodontology University of Bern Bern Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41221631$$D View this record in MEDLINE/PubMed
BookMark eNpVkctOwzAQRS1URB-w4AeQl7BIa8epnbBDFQWkSrCAdeTHOAQlTmsnEvw9Li1IzGY0umcemjtFI9c5QOiSkjmNsdh6MxeE0OIETSgnJCFiKUZoQgrCEy4oG6NpCB-REAVbnqFxRtOUckYn6HM9ON3XnZMN9rAbag8tuD5g23lcDbUBg1XcFsUKHHi5ZxdHoa9DGP5LuIVWeRkbDIS6crf4xXeVhxCwdAbrd9k04CoI5-jUyibAxTHP0Nv6_nX1mGyeH55Wd5tEU572CSNKU5FlkGuqheK5TVmmiNRcGZYasEaIQjCRF1rl2lidC0UNz0GBsBaAzdD1Ye7Wd7sBQl-2ddDQNPHGbgglSwUlOSfxSzN0dUQH1YIpt75upf8qf78VgZsDoH0Xggf7h1BS7p2ItSl_nGDf36t-lQ
Cites_doi 10.1038/s41392-023-01452-1
10.1111/j.1365-2567.2006.02538.x
10.1016/j.msec.2020.111787
10.1016/j.mattod.2015.11.004
10.1016/j.cej.2023.143015
10.1089/ten.tec.2022.0106
10.1002/jbm.a.32747
10.3390/ma11030400
10.1016/j.mtbio.2024.101430
10.1007/s10266-008-0087-y
10.1002/adma.202310697
10.1021/acs.biomac.3c01148
10.1016/j.ijbiomac.2024.137954
10.1021/nn506255e
10.1111/cbdd.13959
10.1021/acsbiomaterials.4c00420
10.1016/j.colsurfb.2024.114117
10.13172/2052-7837-1-1-451
10.1016/j.identj.2023.07.008
10.1002/advs.202307606
10.1016/j.msec.2020.111307
10.1186/s12903-019-0717-5
10.1016/j.nxmate.2025.100561
10.1016/j.intimp.2024.112151
10.1002/advs.202206981
10.1016/j.biomaterials.2010.01.034
10.1034/j.1600-0501.1999.100508.x
10.1097/00006534-198805000-00004
10.1016/j.actbio.2021.02.012
10.1002/JPER.20-0055
10.1016/j.dental.2012.04.022
10.3390/ijms23095142
10.1002/smll.202006598
10.1002/adfm.202412695
10.1002/advs.202305756
10.1038/s41413-022-00190-4
10.1111/prd.12474
10.1111/prd.12002
10.1111/jcpe.13855
10.1111/clr.12213
10.3390/cells13131090
10.1021/acsbiomaterials.6b00357
10.1016/j.redox.2024.103451
10.1016/j.ejcb.2020.151123
10.1021/acsnano.3c12403
10.1039/D3TB01407J
10.1038/s41467-024-53290-6
10.1038/s41413-024-00326-8
10.1039/D3FO04627C
10.4049/jimmunol.1600540
10.1016/j.actbio.2016.11.028
10.1902/jop.2007.060356
10.1016/j.apmt.2024.102332
10.1016/j.cej.2024.154433
10.1016/j.dental.2019.03.011
10.1111/j.1600-051X.1982.tb02095.x
10.1038/s41536-023-00305-3
10.1021/acsnano.4c05677
10.1177/00220345231151921
10.1111/j.1600-051X.2004.00590.x
10.1902/jop.1997.68.7.667
10.1002/adhm.202000707
10.1038/s41467-023-43476-9
10.1111/j.1600-0501.2011.02375.x
10.1111/jre.12498
10.1016/j.bioadv.2024.213892
10.1016/j.jdent.2019.103259
10.1126/science.1116995
10.1088/1468-6996/14/4/044401
10.1038/s41368-022-00195-z
10.1111/prd.12537
10.1111/jcpe.12851
10.1021/acsami.5b06128
10.1002/jbm.b.35060
10.1111/prd.12502
10.1111/prd.12518
10.1016/j.reth.2019.12.011
10.1038/s41467-024-48417-8
10.1016/j.colsurfb.2022.112760
10.1007/s42765-024-00457-x
10.1016/j.matt.2019.05.021
10.1002/app.54313
10.3390/membranes12040378
10.1016/j.actbio.2020.03.044
10.1080/14686996.2023.2186690
10.1016/j.foodres.2025.116490
10.1016/j.cell.2006.06.044
10.1016/0142-9612(96)86739-1
10.1016/j.msec.2015.09.021
10.1016/j.cden.2021.08.003
10.1002/dvg.23490
10.1016/j.matdes.2023.111671
10.22203/eCM.v038a06
10.1016/j.ijbiomac.2023.126085
10.3389/fchem.2020.595530
10.1038/s12276-022-00899-6
10.1039/C7TB00485K
10.1016/j.jddst.2021.102583
10.1111/jcpe.13258
10.1038/ki.2010.418
10.1016/j.compositesb.2024.112019
10.3389/fbioe.2021.781268
10.1111/prd.12323
10.1039/C2BM00032F
10.1002/pen.23329
10.1515/epoly-2021-0021
10.1021/acsnano.6b07808
10.1016/j.ijbiomac.2024.134148
10.1186/1741-7015-10-81
10.1111/prd.12598
10.1021/acsami.2c08400
10.1111/idj.12630
10.1093/nsr/nwad333
10.1038/s41577-021-00557-4
10.1016/j.msec.2019.01.083
10.1016/j.compscitech.2014.03.004
10.1021/acs.analchem.2c04222
10.1002/jbm.b.33430
10.3390/ma14123319
10.1016/j.cell.2013.10.054
10.1016/j.matdes.2024.113126
10.1007/s42765-024-00451-3
10.1016/j.nantod.2024.102624
10.1016/j.biomaterials.2012.02.034
10.1088/1748-605X/aa9bbc
10.1016/j.ijom.2013.05.017
10.1016/j.apmt.2021.100942
10.1111/jre.12378
10.1093/burnst/tkac005
10.3389/fmats.2023.1220420
10.3389/fcimb.2021.639144
10.3390/polym8040115
10.1038/s41467-018-07666-0
10.3390/ijms25084510
10.1016/j.biomaterials.2022.121604
10.3389/fendo.2023.1152845
10.1016/j.nantod.2024.102430
10.1016/j.archoralbio.2013.11.008
10.1111/clr.13114
10.1021/acsnano.4c14305
10.3389/fcimb.2022.908859
10.1002/jps.22189
10.1166/jbn.2019.2743
10.1016/j.stem.2022.10.001
10.1016/j.biomaterials.2021.120998
10.1111/prd.12539
10.1016/j.stem.2022.07.006
10.1089/ten.tea.2017.0094
10.1016/j.colsurfb.2023.113318
10.1111/j.0906-6713.2004.003559.x
10.1111/j.1600-051X.2012.01853.x
10.11607/jomi.3915
10.1038/s41467-019-11397-1
10.1038/s41467-023-43428-3
10.1111/j.1600-0757.1999.tb00153.x
10.1016/j.joms.2008.11.022
10.1016/j.addr.2021.113971
10.1016/j.colsurfb.2023.113147
10.1007/s13233-016-4109-2
10.3390/jcm8091339
10.3389/fcimb.2021.627328
10.1016/j.matdes.2020.109300
10.1189/jlb.4A0214-095R
10.3390/ijms21093283
10.1016/j.nanoen.2024.110113
10.1002/adhm.202401667
10.1021/acsami.4c05722
10.2147/IJN.S455469
10.1002/term.2670
10.1111/prd.12619
10.1002/biot.201100294
10.1007/s10266-019-00470-2
10.1089/ten.tea.2017.0003
10.1186/s42825-023-00144-4
10.1021/acs.biomac.0c01163
10.3389/fbioe.2022.1017613
10.1111/prd.12368
10.3389/fbioe.2023.1117954
10.1007/s00784-014-1201-x
10.1038/s41598-022-09150-8
10.1177/0022034515616760
10.1016/j.mtbio.2023.100906
10.1111/jcpe.13056
10.1111/jcpe.13898
10.1038/s41467-018-03147-6
10.1111/prd.12526
10.2174/1874210601408010056
10.1016/j.foodchem.2025.145039
10.3389/fcell.2021.663037
10.1002/JPER.21-0469
10.1111/j.1600-0757.1993.tb00206.x
10.1002/jbmr.320
10.1039/C7BM00869D
10.1002/btm2.10493
10.1016/j.cden.2021.08.001
10.1016/j.actbio.2019.05.045
10.2147/IJN.S453702
10.1021/acsami.2c11131
10.1002/advs.202404518
10.1021/acs.est.7b01330
10.1002/adfm.202104636
10.1016/S0142-9612(99)00029-0
10.3390/nu16183075
10.1002/smtd.202301283
10.1016/j.cej.2022.138003
10.1111/prd.12568
10.1111/imr.12724
10.1093/rb/rbae058
10.1021/acsomega.3c01289
10.1111/j.1600-051X.2008.01369.x
10.1067/moe.2000.98922
10.1111/prd.12612
10.3390/membranes13010089
10.1016/j.carbpol.2021.117769
10.1002/adhm.202303600
10.1002/adhm.201800675
ContentType Journal Article
Copyright 2025 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1111/prd.70019
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1600-0757
ExternalDocumentID 41221631
10_1111_prd_70019
Genre Journal Article
Review
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1OB
1OC
29O
33P
34H
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CITATION
CS3
CWXXS
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
F00
F01
F04
F5P
FUBAC
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O8X
O9-
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
VVN
W8V
W99
WBKPD
WBNRW
WIH
WIJ
WIK
WOHZO
WPGGZ
WQJ
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
NPM
7X8
ID FETCH-LOGICAL-c162t-30bc1744e8c1c7b68f234b0ac6bd32defd77973789cb8cdfc87b1d68ebe7ffee3
ISSN 0906-6713
1600-0757
IngestDate Wed Nov 12 17:00:38 EST 2025
Thu Nov 13 04:43:40 EST 2025
Sat Nov 29 06:49:30 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords guided bone regeneration
bone regeneration
membrane design
periodontal regeneration
functional requirements
guided tissue regeneration
Language English
License 2025 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c162t-30bc1744e8c1c7b68f234b0ac6bd32defd77973789cb8cdfc87b1d68ebe7ffee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2836-5477
0000-0003-3290-3418
0000-0002-1900-9641
PMID 41221631
PQID 3271086071
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3271086071
pubmed_primary_41221631
crossref_primary_10_1111_prd_70019
PublicationCentury 2000
PublicationDate 2025-Nov-12
PublicationDateYYYYMMDD 2025-11-12
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-Nov-12
  day: 12
PublicationDecade 2020
PublicationPlace Denmark
PublicationPlace_xml – name: Denmark
PublicationTitle Periodontology 2000
PublicationTitleAlternate Periodontol 2000
PublicationYear 2025
References Bonewald LF (e_1_2_10_48_1) 2011; 26
Zhu Y (e_1_2_10_242_1) 2023; 249
Fuchs A (e_1_2_10_32_1) 2019; 19
Ma ZQ (e_1_2_10_171_1) 2024; 10
Mao Z (e_1_2_10_130_1) 2024; 15
Pitaluga LH (e_1_2_10_181_1) 2018; 11
Gentile P (e_1_2_10_34_1) 2011; 6
Discher DE (e_1_2_10_139_1) 2005; 310
Chen EN (e_1_2_10_222_1) 2024; 11
Rocha S (e_1_2_10_82_1) 2023; 13
Lin S (e_1_2_10_98_1) 2025; 19
García‐Alvarez R (e_1_2_10_231_1) 2017; 49
Shi T (e_1_2_10_70_1) 2020; 108
Su N (e_1_2_10_215_1) 2022; 286
Cafferata EA (e_1_2_10_65_1) 2021; 92
Wen Z (e_1_2_10_60_1) 2025; 50
Boda SK (e_1_2_10_189_1) 2020; 21
Hong J (e_1_2_10_78_1) 2024; 133
Sun Y (e_1_2_10_209_1) 2024; 58
Becker W (e_1_2_10_20_1) 1993; 1
Buser D (e_1_2_10_21_1) 1999; 19
Chen ZT (e_1_2_10_133_1) 2018; 6
Peng FL (e_1_2_10_176_1) 2023; 5
Wei JW (e_1_2_10_228_1) 2019; 15
Gibbs S (e_1_2_10_54_1) 2019; 38
Niu X (e_1_2_10_179_1) 2021; 260
Wang LJ (e_1_2_10_123_1) 2024; 244
Lim TC (e_1_2_10_167_1) 2010; 94
Cekici A (e_1_2_10_213_1) 2014; 64
Chen Y (e_1_2_10_6_1) 2025; 23
Zhang J (e_1_2_10_57_1) 2020; 47
Lv L (e_1_2_10_151_1) 2018; 7
Nagasawa M (e_1_2_10_154_1) 2016; 95
Aprile P (e_1_2_10_117_1) 2020; 9
Talbott HE (e_1_2_10_91_1) 2022; 29
Buser D (e_1_2_10_14_1) 2023; 93
Liu X (e_1_2_10_99_1) 2020; 108
Li XY (e_1_2_10_218_1) 2021; 22
Mao LJ (e_1_2_10_147_1) 2022; 14
Lindner C (e_1_2_10_237_1) 2022; 12
Chen K (e_1_2_10_104_1) 2022; 10
Tsuchiya S (e_1_2_10_156_1) 2015; 30
Bee S‐L (e_1_2_10_124_1) 2022; 110
Chen ZT (e_1_2_10_225_1) 2016; 19
Thalakiriyawa DS (e_1_2_10_13_1) 2024; 74
Das KK (e_1_2_10_149_1) 2024; 39
Jiang Q (e_1_2_10_76_1) 2021; 11
Zhao W (e_1_2_10_219_1) 2025; 79
Chen Q (e_1_2_10_95_1) 2021; 9
Cui C (e_1_2_10_183_1) 2025; 30
Cheng Y (e_1_2_10_192_1) 2024; 13
Choi W (e_1_2_10_239_1) 2023; 14
Ouchi T (e_1_2_10_86_1) 2020; 14
Xing XJ (e_1_2_10_238_1) 2022; 218
Jiang S (e_1_2_10_166_1) 2019; 10
Gutta R (e_1_2_10_22_1) 2009; 67
O'Brien‐Simpson NM (e_1_2_10_92_1) 2004; 35
Lee B (e_1_2_10_4_1) 2025; 23
Nyman S (e_1_2_10_18_1) 1982; 9
Zhou XF (e_1_2_10_191_1) 2021; 198
Polimeni G (e_1_2_10_11_1) 2009; 36
Caridade SG (e_1_2_10_169_1) 2017; 23
Bao J (e_1_2_10_69_1) 2024; 51
Matsuzaka K (e_1_2_10_136_1) 1999; 20
Mahanonda R (e_1_2_10_72_1) 2016; 197
Bai YX (e_1_2_10_182_1) 2024; 8
Behring J (e_1_2_10_33_1) 2008; 96
Tsukasaki M (e_1_2_10_68_1) 2018; 9
Tan WL (e_1_2_10_112_1) 2012; 23
Zhang YP (e_1_2_10_240_1) 2023; 8
Liu YT (e_1_2_10_62_1) 2022; 28
Ding Q (e_1_2_10_217_1) 2025; 43
Klymov A (e_1_2_10_132_1) 2013; 1
Nicu EA (e_1_2_10_77_1) 2018; 18
Garrett S (e_1_2_10_26_1) 1997; 68
Ali AU (e_1_2_10_107_1) 2021; 64
Chierico A (e_1_2_10_148_1) 1999; 10
Ko Y‐G (e_1_2_10_158_1) 2016; 24
Ling Y (e_1_2_10_100_1) 2024; 19
Hyzy SL (e_1_2_10_153_1) 2017; 23
Wielento A (e_1_2_10_51_1) 2023; 102
Shin C (e_1_2_10_87_1) 2017; 52
Spinell T (e_1_2_10_118_1) 2019; 35
Kantarci A (e_1_2_10_53_1) 2022; 66
Saha S (e_1_2_10_234_1) 2023; 30
Meng LX (e_1_2_10_84_1) 2022; 10
Zhang H (e_1_2_10_175_1) 2016; 2
Jiao JY (e_1_2_10_159_1) 2023; 11
Brown BN (e_1_2_10_58_1) 2012; 33
Wennerberg A (e_1_2_10_152_1) 2014; 25
Wang J (e_1_2_10_25_1) 2016; 8
Wang FL (e_1_2_10_125_1) 2022; 13
Ceylan M (e_1_2_10_49_1) 2024; 13
Marian D (e_1_2_10_41_1) 2025; 61
Li J (e_1_2_10_200_1) 2021; 125
Li Y (e_1_2_10_101_1) 2024; 16
Sui L (e_1_2_10_110_1) 2020; 8
Walther K‐A (e_1_2_10_102_1) 2024; 96
Quirynen M (e_1_2_10_17_1) 2023; 93
Zhang YL (e_1_2_10_109_1) 2023; 14
Jiang Z (e_1_2_10_193_1) 2024; 19
Chen SZ (e_1_2_10_56_1) 2023; 8
Molly HA (e_1_2_10_96_1) 2024; 16
Gruber R (e_1_2_10_116_1) 2019; 46
Li QQ (e_1_2_10_131_1) 2023; 10
Zhao Y (e_1_2_10_198_1) 2024; 18
Yang YH (e_1_2_10_111_1) 2021; 17
Lei M (e_1_2_10_161_1) 2024; 11
Hu Y (e_1_2_10_227_1) 2024; 24
Calciolari E (e_1_2_10_157_1) 2018; 53
Dimitriou R (e_1_2_10_235_1) 2012; 10
Teng SH (e_1_2_10_174_1) 2016; 58
Wang Z (e_1_2_10_186_1) 2025; 489
Kato H (e_1_2_10_88_1) 2014; 59
Zumstein MT (e_1_2_10_36_1) 2017; 51
Zhang KR (e_1_2_10_180_1) 2019; 1
Mancini L (e_1_2_10_106_1) 2021; 14
Garcia E (e_1_2_10_81_1) 2020; 21
Zhao J (e_1_2_10_195_1) 2024; 11
Seo SJ (e_1_2_10_173_1) 2014; 96
Kim M (e_1_2_10_115_1) 2024; 12
Sasaki J‐I (e_1_2_10_35_1) 2021; 8
Wu S (e_1_2_10_129_1) 2024; 15
Thoma DS (e_1_2_10_90_1) 2018; 29
Ren M (e_1_2_10_178_1) 2025; 284
Chen Y (e_1_2_10_208_1) 2025; 46
Kwon T (e_1_2_10_94_1) 2021; 71
Li W (e_1_2_10_134_1) 2015; 7
Eke PI (e_1_2_10_2_1) 2020; 82
Wu L (e_1_2_10_3_1) 2022; 93
Bottino MC (e_1_2_10_229_1) 2014; 18
Engler AJ (e_1_2_10_141_1) 2006; 126
Carbonell JM (e_1_2_10_24_1) 2014; 43
Zhao Z (e_1_2_10_50_1) 2024; 18
Liu S (e_1_2_10_108_1) 2023; 222
Jo YK (e_1_2_10_190_1) 2023; 8
Parisi L (e_1_2_10_150_1) 2020; 117
Abbasi N (e_1_2_10_163_1) 2020; 5
Fu Z (e_1_2_10_205_1) 2023; 226
Wu J (e_1_2_10_196_1) 2018; 2018
Lu Y (e_1_2_10_122_1) 2024; 277
Fang X (e_1_2_10_223_1) 2024; 15
Luo XT (e_1_2_10_214_1) 2022; 12
Hu HT (e_1_2_10_155_1) 2013; 53
Lamers E (e_1_2_10_138_1) 2010; 31
Souza JCM (e_1_2_10_143_1) 2019; 94
Zellin G (e_1_2_10_165_1) 1996; 17
Rojas R (e_1_2_10_37_1) 2025; 8
Zhao Y (e_1_2_10_211_1) 2025; 44
Di Stefano M (e_1_2_10_93_1) 2022; 23
Xiao JH (e_1_2_10_177_1) 2024; 11
Carcuac O (e_1_2_10_61_1) 2014; 93
Jiang K (e_1_2_10_168_1) 2023; 140
Ma S (e_1_2_10_47_1) 2025; 46
Wang L (e_1_2_10_44_1) 2022; 10
Liu XZ (e_1_2_10_224_1) 2021; 276
Lin JJ (e_1_2_10_233_1) 2023; 11
Hutmacher D (e_1_2_10_38_1) 1996; 11
Yang J (e_1_2_10_5_1) 2025; 23
Chen S (e_1_2_10_40_1) 2023; 92
Chung IC (e_1_2_10_201_1) 2013; 14
Melgar‐Rodriguez S (e_1_2_10_71_1) 2024; 25
Miron RJ (e_1_2_10_9_1) 2025; 97
Abdo VL (e_1_2_10_31_1) 2023; 226
Tian B (e_1_2_10_197_1) 2022; 14
Shim JH (e_1_2_10_164_1) 2018; 13
Chu C (e_1_2_10_59_1) 2019; 99
Zhou HL (e_1_2_10_236_1) 2024; 161
Wang D (e_1_2_10_121_1) 2023; 10
Carrasco E (e_1_2_10_63_1) 2022; 22
e_1_2_10_10_1
Feng Y (e_1_2_10_113_1) 2025; 23
Rowe MJ (e_1_2_10_142_1) 2016; 104
Cui J (e_1_2_10_146_1) 2024; 6
Li Y (e_1_2_10_220_1) 2025; 61
Huang X (e_1_2_10_42_1) 2024; 33
Dahlin C (e_1_2_10_19_1) 1988; 81
Liu Z (e_1_2_10_221_1) 2024; 497
Felipe MEMC (e_1_2_10_29_1) 2007; 78
Yamada A (e_1_2_10_64_1) 2007; 120
Zhu BS (e_1_2_10_137_1) 2005; 11
Yan F (e_1_2_10_83_1) 2025; 35
Wang Y (e_1_2_10_140_1) 2018; 12
Burzyn D (e_1_2_10_66_1) 2013; 155
Chen ZT (e_1_2_10_135_1) 2017; 11
García SLA (e_1_2_10_89_1) 2020; 99
Polimeni G (e_1_2_10_12_1) 2004; 31
Brum IS (e_1_2_10_30_1) 2021; 21
Liu J (e_1_2_10_170_1) 2014; 8
Zhu M (e_1_2_10_73_1) 2014; 96
Liu J (e_1_2_10_85_1) 2020; 92
Alghamdi A (e_1_2_10_194_1) 2023; 95
Donos N (e_1_2_10_127_1) 2023; 93
Bentley ER (e_1_2_10_79_1) 2021; 178
Dahlen G (e_1_2_10_97_1) 2019; 8
Yang Z (e_1_2_10_206_1) 2022; 14
Ul Hassan S (e_1_2_10_55_1) 2021; 98
Xie J (e_1_2_10_188_1) 2021; 120
Qin Q (e_1_2_10_207_1) 2022; 54
Garcia Perez A (e_1_2_10_7_1) 2024; 22
Duske K (e_1_2_10_202_1) 2012; 39
Haegi TT (e_1_2_10_39_1) 2014; 45
Qiao F (e_1_2_10_210_1) 2025; 291
e_1_2_10_8_1
Xia Y (e_1_2_10_212_1) 2023; 465
Hathaway‐Schrader JD (e_1_2_10_43_1) 2021; 86
Xuan YW (e_1_2_10_216_1) 2022; 9
Zhang Y (e_1_2_10_28_1) 2013; 1
Wang YZ (e_1_2_10_230_1) 2010; 99
Vi L (e_1_2_10_45_1) 2018; 9
Chen WZ (e_1_2_10_144_1) 2024; 36
Marouf HA (e_1_2_10_23_1) 2000; 89
Greene AC (e_1_2_10_67_1) 2022; 12
Xiao LF (e_1_2_10_162_1) 2024; 7
Silva LM (e_1_2_10_75_1) 2019; 287
Tian Q (e_1_2_10_184_1) 2025; 212
Halder M (e_1_2_10_187_1) 2024; 25
Lei M (e_1_2_10_128_1) 2024; 11
Lee SB (e_1_2_10_103_1) 2010; 78
Yang YH (e_1_2_10_120_1) 2021; 31
Yang S (e_1_2_10_226_1) 2024; 41
Deng X (e_1_2_10_199_1) 2024; 130
Wang J (e_1_2_10_74_1) 2021; 11
Feng C (e_1_2_10_80_1) 2023; 8
Li Y (e_1_2_10_145_1) 2022; 18
Xu CC (e_1_2_10_126_1) 2022; 450
Wang L (e_1_2_10_204_1) 2025; 49
Miron RJ (e_1_2_10_15_1) 2024; 94
Bottino MC (e_1_2_10_27_1) 2012; 28
Li XY (e_1_2_10_172_1) 2023; 24
Hasturk H (e_1_2_10_105_1) 2022; 66
Graves DT (e_1_2_10_52_1) 2018; 45
Sun L (e_1_2_10_185_1) 2024; 15
Chen J (e_1_2_10_203_1) 2017; 5
Xue JJ (e_1_2_10_232_1) 2015; 9
Mizraji G (e_1_2_10_16_1) 2023; 93
Liu Y (e_1_2_10_160_1) 2024; 13
Mousavi SJ (e_1_2_10_241_1) 2023; 50
Wang Y (e_1_2_10_46_1) 2022; 29
Omi M (e_1_2_10_114_1) 2022; 60
Lu X (e_1_2_10_119_1) 2024; 243
References_xml – volume: 8
  start-page: 207
  issue: 1
  year: 2023
  ident: e_1_2_10_56_1
  article-title: Macrophages in immunoregulation and therapeutics
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-023-01452-1
– volume: 120
  start-page: 573
  issue: 4
  year: 2007
  ident: e_1_2_10_64_1
  article-title: Interleukin‐4 inhibition of osteoclast differentiation is stronger than that of interleukin‐13 and they are equivalent for induction of osteoprotegerin production from osteoblasts
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2006.02538.x
– volume: 120
  year: 2021
  ident: e_1_2_10_188_1
  article-title: The effects of alignment and diameter of electrospun fibers on the cellular behaviors and osteogenesis of BMSCs
  publication-title: Mat Sci Eng C‐Mater
  doi: 10.1016/j.msec.2020.111787
– volume: 19
  start-page: 304
  issue: 6
  year: 2016
  ident: e_1_2_10_225_1
  article-title: Osteoimmunomodulation for the development of advanced bone biomaterials
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2015.11.004
– volume: 465
  year: 2023
  ident: e_1_2_10_212_1
  article-title: 3D‐printed dual‐ion chronological release functional platform reconstructs neuro‐vascularization network for critical‐sized bone defect regeneration
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.143015
– volume: 28
  start-page: 405
  issue: 8
  year: 2022
  ident: e_1_2_10_62_1
  article-title: Challenges and tissue engineering strategies of periodontal‐guided tissue Regeneration
  publication-title: Tissue Eng Part C‐Me
  doi: 10.1089/ten.tec.2022.0106
– volume: 94
  start-page: 1303
  issue: 4
  year: 2010
  ident: e_1_2_10_167_1
  article-title: Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo‐vascularization and cellular infiltration
  publication-title: J Biomed Mater Res Part A
  doi: 10.1002/jbm.a.32747
– volume: 45
  start-page: 185
  issue: 3
  year: 2014
  ident: e_1_2_10_39_1
  article-title: Regenerative periodontal therapy
  publication-title: Dent Dig
– volume: 11
  start-page: 400
  issue: 3
  year: 2018
  ident: e_1_2_10_181_1
  article-title: Electrospun F18 bioactive glass/PCL‐poly (ε‐caprolactone)‐membrane for guided tissue Regeneration
  publication-title: Materials
  doi: 10.3390/ma11030400
– volume: 30
  year: 2025
  ident: e_1_2_10_183_1
  article-title: Peptide platform for 3D‐printed Ti implants with synergistic antibacterial and osteogenic functions to enhance osseointegration
  publication-title: Mater Today Bio
  doi: 10.1016/j.mtbio.2024.101430
– volume: 96
  start-page: 1
  issue: 1
  year: 2008
  ident: e_1_2_10_33_1
  article-title: Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A Systematic Review
  publication-title: Odontology
  doi: 10.1007/s10266-008-0087-y
– volume: 93
  start-page: 1083
  issue: 11
  year: 2014
  ident: e_1_2_10_61_1
  article-title: Composition of human peri‐implantitis and periodontitis lesions
  publication-title: J Dent
– volume: 36
  issue: 13
  year: 2024
  ident: e_1_2_10_144_1
  article-title: Harmonizing thickness and permeability in bone tissue engineering: a novel silk fibroin membrane inspired by spider silk dynamics
  publication-title: Adv Mater
  doi: 10.1002/adma.202310697
– volume: 25
  start-page: 2286
  issue: 4
  year: 2024
  ident: e_1_2_10_187_1
  article-title: Investigating the role of amino acids in short peptides for hydroxyapatite binding and osteogenic differentiation of mesenchymal stem cells to aid bone Regeneration
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.3c01148
– volume: 284
  year: 2025
  ident: e_1_2_10_178_1
  article-title: Electrospinning of recombinant human‐like collagen‐reinforced PCL nanofibrous membranes using benign solvents for periodontal regeneration
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2024.137954
– volume: 9
  start-page: 1600
  issue: 2
  year: 2015
  ident: e_1_2_10_232_1
  article-title: Electrospun microfiber membranes embedded with drug‐loaded clay nanotubes for sustained antimicrobial protection
  publication-title: ACS Nano
  doi: 10.1021/nn506255e
– volume: 98
  start-page: 1007
  issue: 6
  year: 2021
  ident: e_1_2_10_55_1
  article-title: Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration
  publication-title: Chem Biol Drug Des
  doi: 10.1111/cbdd.13959
– volume: 10
  start-page: 3984
  issue: 6
  year: 2024
  ident: e_1_2_10_171_1
  article-title: Shear flow‐assembled Janus membrane with bifunctional osteogenic and antibacterial effects for guided bone Regeneration
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.4c00420
– volume: 243
  year: 2024
  ident: e_1_2_10_119_1
  article-title: Janus sponge/electrospun fibre composite combined with EGF/bFGF/CHX promotes reconstruction in oral tissue regeneration
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2024.114117
– volume: 44
  start-page: 339
  year: 2025
  ident: e_1_2_10_211_1
  article-title: Periosteum‐bone inspired hierarchical scaffold with endogenous piezoelectricity for neuro‐vascularized bone regeneration
  publication-title: Bioact Mater
– volume: 1
  start-page: 10
  issue: 1
  year: 2013
  ident: e_1_2_10_28_1
  article-title: Membranes for guided tissue and bone regeneration
  publication-title: Ann Oral Maxillofac Surg
  doi: 10.13172/2052-7837-1-1-451
– volume: 74
  start-page: 25
  issue: 1
  year: 2024
  ident: e_1_2_10_13_1
  article-title: Advances in regenerative dentistry approaches: an update
  publication-title: Int Dent J
  doi: 10.1016/j.identj.2023.07.008
– volume: 11
  issue: 12
  year: 2024
  ident: e_1_2_10_128_1
  article-title: Electro‐sorting create heterogeneity: constructing a multifunctional Janus film with integrated compositional and microstructural gradients for guided bone Regeneration
  publication-title: Adv Sci
  doi: 10.1002/advs.202307606
– volume: 117
  year: 2020
  ident: e_1_2_10_150_1
  article-title: Titanium dental implants hydrophilicity promotes preferential serum fibronectin over albumin competitive adsorption modulating early cell response
  publication-title: Mat Sci Eng C‐Mater
  doi: 10.1016/j.msec.2020.111307
– volume: 19
  start-page: 1
  year: 2019
  ident: e_1_2_10_32_1
  article-title: Medical‐grade polycaprolactone scaffolds made by melt electrospinning writing for oral bone regeneration – a pilot study in vitro
  publication-title: BMC Oral Health
  doi: 10.1186/s12903-019-0717-5
– volume: 8
  year: 2025
  ident: e_1_2_10_37_1
  article-title: Self‐standing films of medical grade PLA/PEG copolymers for guided bone regeneration
  publication-title: Next Materials
  doi: 10.1016/j.nxmate.2025.100561
– volume: 133
  year: 2024
  ident: e_1_2_10_78_1
  article-title: The immune cells in modulating osteoclast formation and bone metabolism
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2024.112151
– volume: 10
  issue: 16
  year: 2023
  ident: e_1_2_10_131_1
  article-title: Band‐aid‐like self‐fixed barrier membranes enable superior bone augmentation
  publication-title: Adv Sci
  doi: 10.1002/advs.202206981
– volume: 13
  start-page: 53
  year: 2022
  ident: e_1_2_10_125_1
  article-title: Photocrosslinkable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogenetic effects during guided bone regeneration
  publication-title: Bioact Mater
– volume: 31
  start-page: 3307
  issue: 12
  year: 2010
  ident: e_1_2_10_138_1
  article-title: The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.01.034
– volume: 10
  start-page: 415
  issue: 5
  year: 1999
  ident: e_1_2_10_148_1
  article-title: Electrically charged GTAM membranes stimulate osteogenesis in rabbit calvarial defects
  publication-title: Clin Oral Implants Res
  doi: 10.1034/j.1600-0501.1999.100508.x
– volume: 46
  start-page: 37
  year: 2025
  ident: e_1_2_10_208_1
  article-title: Throw out an oligopeptide to catch a protein: deep learning and natural language processing‐screened tripeptide PSP promotes Osteolectin‐mediated vascularized bone regeneration
  publication-title: Bioact Mater
– volume: 81
  start-page: 672
  issue: 5
  year: 1988
  ident: e_1_2_10_19_1
  article-title: Healing of bone defects by guided tissue Regeneration
  publication-title: Plast Reconstr Surg
  doi: 10.1097/00006534-198805000-00004
– volume: 125
  start-page: 112
  year: 2021
  ident: e_1_2_10_200_1
  article-title: Matrix stiffening by self‐mineralizable guided bone regeneration
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2021.02.012
– volume: 92
  start-page: 123
  issue: 1
  year: 2021
  ident: e_1_2_10_65_1
  article-title: Boldine inhibits the alveolar bone resorption during ligature‐induced periodontitis by modulating the Th17/Treg imbalance
  publication-title: J Periodontol
  doi: 10.1002/JPER.20-0055
– volume: 28
  start-page: 703
  issue: 7
  year: 2012
  ident: e_1_2_10_27_1
  article-title: Recent advances in the development of GTR/GBR membranes for periodontal regeneration‐a materials perspective
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2012.04.022
– volume: 23
  start-page: 149
  issue: 1
  year: 2025
  ident: e_1_2_10_6_1
  article-title: Periodontitis and the risk of heart failure: a meta‐analysis and Mendelian randomisation study
  publication-title: Oral Hlth Prev Dent
– volume: 23
  start-page: 5142
  issue: 9
  year: 2022
  ident: e_1_2_10_93_1
  article-title: Impact of Oral microbiome in periodontal health and periodontitis: a critical review on prevention and treatment
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23095142
– volume: 17
  issue: 14
  year: 2021
  ident: e_1_2_10_111_1
  article-title: Biomimetic, stiff, and adhesive periosteum with osteogenic‐angiogenic coupling effect for bone Regeneration
  publication-title: Small
  doi: 10.1002/smll.202006598
– volume: 35
  issue: 7
  year: 2025
  ident: e_1_2_10_83_1
  article-title: Hierarchical mineralized collagen coated Zn membrane to tailor cell microenvironment for guided bone Regeneration
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202412695
– volume: 22
  start-page: 495
  year: 2024
  ident: e_1_2_10_7_1
  article-title: Relationship between low education and poor periodontal status among Mexican adults aged ≥50 years
  publication-title: Oral Hlth Prev Dent
– volume: 23
  start-page: 271
  issue: 1
  year: 2025
  ident: e_1_2_10_4_1
  article-title: Association of Body Mass Index and Waist Circumference with periodontal disease
  publication-title: Oral Hlth Prev Dent
– volume: 33
  start-page: 129
  year: 2024
  ident: e_1_2_10_42_1
  article-title: Biomaterial scaffolds in maxillofacial bone tissue engineering: a review of recent advances
  publication-title: Bioact Mater
– volume: 11
  issue: 13
  year: 2024
  ident: e_1_2_10_161_1
  article-title: Programmable electro‐assembly of collagen: constructing porous Janus films with customized dual signals for immunomodulation and tissue Regeneration in periodontitis treatment
  publication-title: Adv Sci
  doi: 10.1002/advs.202305756
– volume: 10
  start-page: 16
  issue: 1
  year: 2022
  ident: e_1_2_10_44_1
  article-title: Mechanical regulation of bone remodeling
  publication-title: Bone Res
  doi: 10.1038/s41413-022-00190-4
– volume: 92
  start-page: 220
  issue: 1
  year: 2023
  ident: e_1_2_10_40_1
  article-title: Complications and treatment errors in implant positioning in the aesthetic zone: diagnosis and possible solutions
  publication-title: Periodontol 2000
  doi: 10.1111/prd.12474
– volume: 64
  start-page: 57
  issue: 1
  year: 2014
  ident: e_1_2_10_213_1
  article-title: Inflammatory and immune pathways in the pathogenesis of periodontal disease
  publication-title: Periodontol 2000
  doi: 10.1111/prd.12002
– volume: 50
  start-page: 1390
  issue: 10
  year: 2023
  ident: e_1_2_10_241_1
  article-title: In vivo evaluation of bone regeneration using ZIF8‐modified polypropylene membrane in rat calvarium defects
  publication-title: J Clin Periodontol
  doi: 10.1111/jcpe.13855
– volume: 25
  start-page: 1041
  issue: 9
  year: 2014
  ident: e_1_2_10_152_1
  article-title: Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia
  publication-title: Clin Oral Implants Res
  doi: 10.1111/clr.12213
– volume: 13
  start-page: 1090
  issue: 13
  year: 2024
  ident: e_1_2_10_49_1
  article-title: Osteogenic differentiation of human gingival fibroblasts inhibits osteoclast formation
  publication-title: Cells
  doi: 10.3390/cells13131090
– volume: 2
  start-page: 2162
  issue: 12
  year: 2016
  ident: e_1_2_10_175_1
  article-title: Bilayered PLGA/wool keratin composite membranes support periodontal Regeneration in beagle dogs
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.6b00357
– volume: 30
  start-page: 46
  year: 2023
  ident: e_1_2_10_234_1
  article-title: Collagen membrane functionalized with magnesium oxide via room‐temperature atomic layer deposition promotes osteopromotive and antimicrobial properties
  publication-title: Bioact Mater
– volume: 79
  year: 2025
  ident: e_1_2_10_219_1
  article-title: Revolutionizing oral care: reactive oxygen species (ROS)‐regulating biomaterials for combating infection and inflammation
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2024.103451
– volume: 99
  issue: 7
  year: 2020
  ident: e_1_2_10_89_1
  article-title: The phenotype of gingival fibroblasts and their potential use in advanced therapies
  publication-title: Eur J Cell Biol
  doi: 10.1016/j.ejcb.2020.151123
– volume: 18
  start-page: 7204
  issue: 9
  year: 2024
  ident: e_1_2_10_198_1
  article-title: Janus membrane with intrafibrillarly strontium‐apatite‐mineralized collagen for guided bone Regeneration
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c12403
– volume: 11
  start-page: 9223
  issue: 38
  year: 2023
  ident: e_1_2_10_233_1
  article-title: Janus functional electrospun polyurethane fibrous membranes for periodontal tissue regeneration
  publication-title: J Mater Chem B
  doi: 10.1039/D3TB01407J
– volume: 15
  start-page: 9071
  issue: 1
  year: 2024
  ident: e_1_2_10_223_1
  article-title: Polyphenol‐mediated redox‐active hydrogel with H2S gaseous‐bioelectric coupling for periodontal bone healing in diabetes
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-53290-6
– volume: 12
  start-page: 29
  issue: 1
  year: 2024
  ident: e_1_2_10_115_1
  article-title: RUFY4 deletion prevents pathological bone loss by blocking endo‐lysosomal trafficking of osteoclasts
  publication-title: Bone Res
  doi: 10.1038/s41413-024-00326-8
– volume: 15
  start-page: 2587
  issue: 5
  year: 2024
  ident: e_1_2_10_185_1
  article-title: Structural characterisation of deer sinew peptides as calcium carriers, their promotion of MC3T3‐E1 cell proliferation and their effect on bone deposition in mice
  publication-title: Food Funct
  doi: 10.1039/D3FO04627C
– volume: 197
  start-page: 715
  issue: 3
  year: 2016
  ident: e_1_2_10_72_1
  article-title: Human memory B cells in healthy gingiva, gingivitis, and periodontitis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1600540
– volume: 49
  start-page: 113
  year: 2017
  ident: e_1_2_10_231_1
  article-title: 3D scaffold with effective multidrug sequential release against bacteria biofilm
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2016.11.028
– volume: 78
  start-page: 1209
  issue: 7
  year: 2007
  ident: e_1_2_10_29_1
  article-title: Comparison of two surgical procedures for use of the acellular dermal matrix graft in the treatment of gingival recession: a randomized controlled clinical study
  publication-title: J Periodontol
  doi: 10.1902/jop.2007.060356
– volume: 39
  year: 2024
  ident: e_1_2_10_149_1
  article-title: Interplay of piezoelectricity and electrical stimulation in tissue engineering and regenerative medicine
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2024.102332
– volume: 46
  start-page: 97
  year: 2025
  ident: e_1_2_10_47_1
  article-title: A deformable SIS/HA composite hydrogel coaxial scaffold promotes alveolar bone regeneration after tooth extraction
  publication-title: Bioact Mater
– volume: 497
  year: 2024
  ident: e_1_2_10_221_1
  article-title: Smart glucose‐responsive hydrogel with ROS scavenging and homeostasis regulating properties for diabetic bone regeneration
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2024.154433
– volume: 35
  start-page: 963
  issue: 7
  year: 2019
  ident: e_1_2_10_118_1
  article-title: In‐vitro cytocompatibility and growth factor content of GBR/GTR membranes
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2019.03.011
– volume: 9
  start-page: 290
  issue: 4
  year: 1982
  ident: e_1_2_10_18_1
  article-title: New attachment following surgical‐treatment of human periodontal‐disease
  publication-title: J Clin Periodontol
  doi: 10.1111/j.1600-051X.1982.tb02095.x
– volume: 8
  start-page: 28
  issue: 1
  year: 2023
  ident: e_1_2_10_240_1
  article-title: Janus porous polylactic acid membranes with versatile metal‐phenolic interface for biomimetic periodontal bone regeneration
  publication-title: npj Regener Med
  doi: 10.1038/s41536-023-00305-3
– volume: 50
  start-page: 95
  year: 2025
  ident: e_1_2_10_60_1
  article-title: An engineered M2 macrophage‐derived exosomes‐loaded electrospun biomimetic periosteum promotes cell recruitment, immunoregulation, and angiogenesis in bone regeneration
  publication-title: Bioact Mater
– volume: 18
  start-page: 29507
  issue: 43
  year: 2024
  ident: e_1_2_10_50_1
  article-title: Bioinspired glycopeptide hydrogel reestablishing bone homeostasis through mediating osteoclasts and osteogenesis in periodontitis treatment
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c05677
– volume: 102
  start-page: 489
  issue: 5
  year: 2023
  ident: e_1_2_10_51_1
  article-title: The role of gingival fibroblasts in the pathogenesis of periodontitis
  publication-title: J Dent Res
  doi: 10.1177/00220345231151921
– volume: 31
  start-page: 927
  issue: 11
  year: 2004
  ident: e_1_2_10_12_1
  article-title: Prognostic factors for alveolar regeneration: bone formation at teeth and titanium implants
  publication-title: J Clin Periodontol
  doi: 10.1111/j.1600-051X.2004.00590.x
– volume: 68
  start-page: 667
  issue: 7
  year: 1997
  ident: e_1_2_10_26_1
  article-title: Comparison of a bioabsorbable GTR barrier to a non‐absorbable barrier in treating human class II furcation defects. A multi‐center parallel design randomized single‐blind trial
  publication-title: J Periodontol
  doi: 10.1902/jop.1997.68.7.667
– volume: 9
  issue: 19
  year: 2020
  ident: e_1_2_10_117_1
  article-title: Membranes for guided bone Regeneration: a road from bench to bedside
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.202000707
– volume: 15
  start-page: 119
  issue: 1
  year: 2024
  ident: e_1_2_10_129_1
  article-title: All‐in‐one porous membrane enables full protection in guided bone regeneration
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-43476-9
– volume: 23
  start-page: 1
  issue: 5
  year: 2012
  ident: e_1_2_10_112_1
  article-title: A systematic review of post‐extractional alveolar hard and soft tissue dimensional changes in humans
  publication-title: Clin Oral Implants Res
  doi: 10.1111/j.1600-0501.2011.02375.x
– volume: 53
  start-page: 174
  issue: 2
  year: 2018
  ident: e_1_2_10_157_1
  article-title: Protein expression during early stages of bone regeneration under hydrophobic and hydrophilic titanium domes. A pilot study
  publication-title: J Periodontal Res
  doi: 10.1111/jre.12498
– volume: 161
  year: 2024
  ident: e_1_2_10_236_1
  article-title: A Janus, robust, biodegradable bacterial cellulose/Ti3C2Tx MXene bilayer membranes for guided bone regeneration
  publication-title: Biomater Adv
  doi: 10.1016/j.bioadv.2024.213892
– volume: 92
  year: 2020
  ident: e_1_2_10_85_1
  article-title: Stem cells in the periodontal ligament differentiated into osteogenic, fibrogenic and cementogenic lineages for the regeneration of the periodontal complex
  publication-title: J Dent
  doi: 10.1016/j.jdent.2019.103259
– volume: 310
  start-page: 1139
  issue: 5751
  year: 2005
  ident: e_1_2_10_139_1
  article-title: Tissue cells feel and respond to the stiffness of their substrate
  publication-title: Science
  doi: 10.1126/science.1116995
– volume: 14
  issue: 4
  year: 2013
  ident: e_1_2_10_201_1
  article-title: The influence of different nanostructured scaffolds on fibroblast growth
  publication-title: Sci Technol Adv Mater
  doi: 10.1088/1468-6996/14/4/044401
– volume: 14
  start-page: 45
  issue: 1
  year: 2022
  ident: e_1_2_10_197_1
  article-title: A 3D‐printed molybdenum‐containing scaffold exerts dual pro‐osteogenic and anti‐osteoclastogenic effects to facilitate alveolar bone repair
  publication-title: Int J Oral Sci
  doi: 10.1038/s41368-022-00195-z
– volume: 94
  start-page: 114
  issue: 1
  year: 2024
  ident: e_1_2_10_15_1
  article-title: Extended platelet‐rich fibrin
  publication-title: Periodontol 2000
  doi: 10.1111/prd.12537
– volume: 45
  start-page: 285
  issue: 3
  year: 2018
  ident: e_1_2_10_52_1
  article-title: Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL
  publication-title: J Clin Periodontol
  doi: 10.1111/jcpe.12851
– volume: 7
  start-page: 20845
  issue: 37
  year: 2015
  ident: e_1_2_10_134_1
  article-title: Multifunctional chitosan‐45S5 bioactive glass‐poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) microsphere composite membranes for guided tissue/bone Regeneration
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b06128
– volume: 110
  start-page: 2157
  issue: 9
  year: 2022
  ident: e_1_2_10_124_1
  article-title: Asymmetric resorbable‐based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: a review
  publication-title: J Biomed Mater Res B
  doi: 10.1002/jbm.b.35060
– volume: 93
  start-page: 56
  issue: 1
  year: 2023
  ident: e_1_2_10_16_1
  article-title: Membrane barriers for guided bone regeneration: an overview of available biomaterials
  publication-title: Periodontol 2000
  doi: 10.1111/prd.12502
– volume: 8
  start-page: 54
  issue: 1
  year: 2021
  ident: e_1_2_10_35_1
  article-title: Barrier membranes for tissue regeneration in dentistry
  publication-title: Biomater Invest Dent
– volume: 93
  start-page: 26
  issue: 1
  year: 2023
  ident: e_1_2_10_127_1
  article-title: Bone regeneration in implant dentistry: which are the factors affecting the clinical outcome?
  publication-title: Periodontol 2000
  doi: 10.1111/prd.12518
– volume: 2018
  year: 2018
  ident: e_1_2_10_196_1
  article-title: The differentiation balance of bone marrow mesenchymal stem cells is crucial to hematopoiesis
  publication-title: Stem Cells Int
– volume: 14
  start-page: 72
  year: 2020
  ident: e_1_2_10_86_1
  article-title: Mesenchymal stem cell‐based tissue regeneration therapies for periodontitis
  publication-title: Regen Ther
  doi: 10.1016/j.reth.2019.12.011
– volume: 15
  start-page: 4160
  issue: 1
  year: 2024
  ident: e_1_2_10_130_1
  article-title: Mechanically robust and personalized silk fibroin‐magnesium composite scaffolds with water‐responsive shape‐memory for irregular bone regeneration
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-48417-8
– volume: 218
  year: 2022
  ident: e_1_2_10_238_1
  article-title: A novel visible light‐curing chitosan‐based hydrogel membrane for guided tissue regeneration
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2022.112760
– volume: 6
  start-page: 1855
  issue: 6
  year: 2024
  ident: e_1_2_10_146_1
  article-title: Remodeling electrophysiological microenvironment for promoting bone defect repair via electret hybrid electrospun fibrous mat
  publication-title: Adv Fiber Mater
  doi: 10.1007/s42765-024-00457-x
– volume: 1
  start-page: 770
  issue: 3
  year: 2019
  ident: e_1_2_10_180_1
  article-title: Multifunctional bilayer nanocomposite guided bone Regeneration membrane
  publication-title: Matter
  doi: 10.1016/j.matt.2019.05.021
– volume: 140
  issue: 34
  year: 2023
  ident: e_1_2_10_168_1
  article-title: Potential of uniaxial electrospun composite nanofibers based on polycaprolactone and polyvinyl alcohol in guided bone regeneration
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.54313
– volume: 12
  start-page: 378
  issue: 4
  year: 2022
  ident: e_1_2_10_237_1
  article-title: In vivo biocompatibility analysis of a novel barrier membrane based on bovine dermis‐derived collagen for guided bone Regeneration (GBR)
  publication-title: Membranes
  doi: 10.3390/membranes12040378
– volume: 108
  start-page: 207
  year: 2020
  ident: e_1_2_10_99_1
  article-title: A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2020.03.044
– volume: 24
  issue: 1
  year: 2023
  ident: e_1_2_10_172_1
  article-title: Optimizing the biodegradability and osteogenesis of biogenic collagen membrane via fluoride‐modified polymer‐induced liquid precursor process
  publication-title: Sci Technol Adv Mater
  doi: 10.1080/14686996.2023.2186690
– volume: 212
  year: 2025
  ident: e_1_2_10_184_1
  article-title: Deciphering the calcium‐binding mechanism of a novel cod bone‐derived peptide: a synergistic experimental and computational analysis
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2025.116490
– volume: 126
  start-page: 677
  issue: 4
  year: 2006
  ident: e_1_2_10_141_1
  article-title: Matrix elasticity directs stem cell lineage specification
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.044
– volume: 17
  start-page: 695
  issue: 7
  year: 1996
  ident: e_1_2_10_165_1
  article-title: Effects of different osteopromotive membrane porosities on experimental bone neogenesis in rats
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(96)86739-1
– volume: 58
  start-page: 610
  year: 2016
  ident: e_1_2_10_174_1
  article-title: Biomimetic composite microspheres of collagen/chitosan/nano‐hydroxyapatite: in‐situ synthesis and characterization
  publication-title: Mat Sci Eng C‐Mater
  doi: 10.1016/j.msec.2015.09.021
– volume: 66
  start-page: 39
  issue: 1
  year: 2022
  ident: e_1_2_10_105_1
  article-title: Inflammation and periodontal regeneration
  publication-title: Dent Clin N Am
  doi: 10.1016/j.cden.2021.08.003
– volume: 41
  start-page: 239
  year: 2024
  ident: e_1_2_10_226_1
  article-title: A five‐in‐one novel MOF‐modified injectable hydrogel with thermo‐sensitive and adhesive properties for promoting alveolar bone repair in periodontitis: antibacterial, hemostasis, immune reprogramming, pro‐osteo‐/angiogenesis and recruitment
  publication-title: Bioact Mater
– volume: 60
  issue: 8
  year: 2022
  ident: e_1_2_10_114_1
  article-title: Roles of osteoclasts in alveolar bone remodeling
  publication-title: Genesis
  doi: 10.1002/dvg.23490
– volume: 226
  year: 2023
  ident: e_1_2_10_205_1
  article-title: Promoting bone regeneration via bioactive calcium silicate nanowires reinforced poly (E‐caprolactone) electrospun fibrous membranes
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2023.111671
– volume: 38
  start-page: 63
  year: 2019
  ident: e_1_2_10_54_1
  article-title: Biology of soft tissue repair: gingival epithelium in wound healing and attachment to the tooth and abutment surface
  publication-title: Eur Cell Mater
  doi: 10.22203/eCM.v038a06
– volume: 249
  year: 2023
  ident: e_1_2_10_242_1
  article-title: Resveratrol‐loaded co‐axial electrospun poly(ε‐caprolactone)/chitosan/polyvinyl alcohol membranes for promotion of cells osteogenesis and bone regeneration
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2023.126085
– volume: 8
  year: 2020
  ident: e_1_2_10_110_1
  article-title: ROS‐scavenging nanomaterials to treat periodontitis
  publication-title: Front Chem
  doi: 10.3389/fchem.2020.595530
– volume: 54
  start-page: 1844
  issue: 11
  year: 2022
  ident: e_1_2_10_207_1
  article-title: Neurovascular coupling in bone regeneration
  publication-title: Exp Mol Med
  doi: 10.1038/s12276-022-00899-6
– volume: 5
  start-page: 3640
  issue: 20
  year: 2017
  ident: e_1_2_10_203_1
  article-title: Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration
  publication-title: J Mater Chem B
  doi: 10.1039/C7TB00485K
– volume: 64
  year: 2021
  ident: e_1_2_10_107_1
  article-title: Performance of simvastatin microsponges as a local treatment for chronic periodontitis–randomized clinical trial
  publication-title: J Drug Delivery Sci Technol
  doi: 10.1016/j.jddst.2021.102583
– volume: 47
  start-page: 451
  issue: 4
  year: 2020
  ident: e_1_2_10_57_1
  article-title: NLRP3 inflammasome mediates M1 macrophage polarization and IL‐1β production in inflammatory root resorption
  publication-title: J Clin Periodontol
  doi: 10.1111/jcpe.13258
– volume: 78
  start-page: S22
  year: 2010
  ident: e_1_2_10_103_1
  article-title: Mechanistic connection between inflammation and fibrosis
  publication-title: Kidney Int
  doi: 10.1038/ki.2010.418
– volume: 291
  year: 2025
  ident: e_1_2_10_210_1
  article-title: Growth factor collected cell membrane‐functionalized matrix for vascular‐innervated bone regeneration
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2024.112019
– volume: 9
  year: 2022
  ident: e_1_2_10_216_1
  article-title: Hierarchical intrafibrillarly mineralized collagen membrane promotes guided bone regeneration and regulates M2 macrophage polarization
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2021.781268
– volume: 82
  start-page: 257
  issue: 1
  year: 2020
  ident: e_1_2_10_2_1
  article-title: Recent epidemiologic trends in periodontitis in the USA
  publication-title: Periodontol 2000
  doi: 10.1111/prd.12323
– volume: 1
  start-page: 135
  issue: 2
  year: 2013
  ident: e_1_2_10_132_1
  article-title: Understanding the role of nano‐topography on the surface of a bone‐implant
  publication-title: Biomater Sci
  doi: 10.1039/C2BM00032F
– volume: 53
  start-page: 833
  issue: 4
  year: 2013
  ident: e_1_2_10_155_1
  article-title: Processing and properties of hydrophilic electrospun polylactic acid/beta‐tricalcium phosphate membrane for dental applications
  publication-title: Polym Eng Sci
  doi: 10.1002/pen.23329
– volume: 43
  start-page: 550
  year: 2025
  ident: e_1_2_10_217_1
  article-title: A natural polyphenolic nanoparticle‐knotted hydrogel scavenger for osteoarthritis therapy
  publication-title: Bioact Mater
– volume: 21
  start-page: 210
  issue: 1
  year: 2021
  ident: e_1_2_10_30_1
  article-title: Properties of a bovine collagen type I membrane for guided bone regeneration applications
  publication-title: E‐Polym
  doi: 10.1515/epoly-2021-0021
– volume: 11
  start-page: 4494
  issue: 5
  year: 2017
  ident: e_1_2_10_135_1
  article-title: Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone Regeneration applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07808
– volume: 277
  year: 2024
  ident: e_1_2_10_122_1
  article-title: An enhanced tri‐layer bionic periosteum with gradient structure loaded by mineralized collagen for guided bone regeneration and in‐situ repair
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2024.134148
– volume: 10
  start-page: 81
  year: 2012
  ident: e_1_2_10_235_1
  article-title: The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence
  publication-title: BMC Med
  doi: 10.1186/1741-7015-10-81
– volume: 61
  start-page: 20
  issue: 1
  year: 2025
  ident: e_1_2_10_41_1
  article-title: Challenges and innovations in alveolar bone Regeneration: a narrative review on materials, techniques, clinical outcomes, and future directions
  publication-title: Medicina‐Lithuania
– volume: 97
  start-page: 153
  issue: 1
  year: 2025
  ident: e_1_2_10_9_1
  article-title: Autogenous platelet concentrates for treatment of intrabony defects‐a systematic review with meta‐analysis
  publication-title: Periodontol 2000
  doi: 10.1111/prd.12598
– volume: 14
  start-page: 36395
  issue: 32
  year: 2022
  ident: e_1_2_10_206_1
  article-title: Self‐adhesive hydrogel biomimetic periosteum to promote critical‐size bone defect repair via synergistic osteogenesis and angiogenesis
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c08400
– volume: 71
  start-page: 462
  issue: 6
  year: 2021
  ident: e_1_2_10_94_1
  article-title: Current concepts in the management of periodontitis
  publication-title: Int Dent J
  doi: 10.1111/idj.12630
– volume: 11
  issue: 3
  year: 2024
  ident: e_1_2_10_177_1
  article-title: Bioinspired polysaccharide‐based nanocomposite membranes with robust wet mechanical properties for guided bone regeneration
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwad333
– volume: 22
  start-page: 97
  issue: 2
  year: 2022
  ident: e_1_2_10_63_1
  article-title: The role of T cells in age‐related diseases
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-021-00557-4
– volume: 99
  start-page: 73
  year: 2019
  ident: e_1_2_10_59_1
  article-title: Evaluation of epigallocatechin‐3‐gallate (EGCG) modified collagen in guided bone regeneration (GBR) surgery and modulation of macrophage phenotype
  publication-title: Mat Sci Eng C Mater
  doi: 10.1016/j.msec.2019.01.083
– volume: 96
  start-page: 31
  year: 2014
  ident: e_1_2_10_173_1
  article-title: Enhanced mechanical properties and bone bioactivity of chitosan/silica membrane by functionalized‐carbon nanotube incorporation
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2014.03.004
– volume: 95
  start-page: 1958
  issue: 3
  year: 2023
  ident: e_1_2_10_194_1
  article-title: Nanoscopic characterization of cell migration under flow using optical and electron microscopy
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.2c04222
– volume: 104
  start-page: 594
  issue: 3
  year: 2016
  ident: e_1_2_10_142_1
  article-title: Dimensionally stable and bioactive membrane for guided bone regeneration: an in vitro study
  publication-title: J Biomed Mater Res B
  doi: 10.1002/jbm.b.33430
– volume: 14
  start-page: 3319
  issue: 12
  year: 2021
  ident: e_1_2_10_106_1
  article-title: Biomaterials for periodontal and peri‐implant Regeneration
  publication-title: Materials
  doi: 10.3390/ma14123319
– volume: 18
  start-page: 213
  year: 2022
  ident: e_1_2_10_145_1
  article-title: Polydopamine‐mediated graphene oxide and nanohydroxyapatite‐incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes
  publication-title: Bioact Mater
– volume: 155
  start-page: 1282
  issue: 6
  year: 2013
  ident: e_1_2_10_66_1
  article-title: A special population of regulatory T cells potentiates muscle repair
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.054
– volume: 244
  year: 2024
  ident: e_1_2_10_123_1
  article-title: Developing a multifunctional gradient pore structure Janus membrane loaded with MB@ZIF‐8 nanoparticles and hydroxyapatite for guided periodontal bone regeneration
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2024.113126
– volume: 11
  start-page: 825
  issue: 5
  year: 2005
  ident: e_1_2_10_137_1
  article-title: Alignment of osteoblast‐like cells and cell‐produced collagen matrix induced by nanogrooves
  publication-title: Tissue Eng
– volume: 7
  start-page: 72
  issue: 1
  year: 2024
  ident: e_1_2_10_162_1
  article-title: Fishnet‐inspired 3D scaffold fabricated from mesh‐like electrospun membranes promoted osteoporotic bone regeneration
  publication-title: Adv Fiber Mater
  doi: 10.1007/s42765-024-00451-3
– volume: 61
  year: 2025
  ident: e_1_2_10_220_1
  article-title: Smart multifunctional Cu2O@RuO2 nanozyme for angiogenesis and osteogenesis in periodontitis
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2024.102624
– volume: 33
  start-page: 3792
  issue: 15
  year: 2012
  ident: e_1_2_10_58_1
  article-title: Macrophage polarization: an opportunity for improved outcomes in and regenerative medicine
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.02.034
– volume: 13
  issue: 1
  year: 2018
  ident: e_1_2_10_164_1
  article-title: Porosity effect of 3D‐printed polycaprolactone membranes on calvarial defect model for guided bone regeneration
  publication-title: Biomed Mater
  doi: 10.1088/1748-605X/aa9bbc
– volume: 43
  start-page: 75
  issue: 1
  year: 2014
  ident: e_1_2_10_24_1
  article-title: High‐density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review
  publication-title: Int J Oral Surg
  doi: 10.1016/j.ijom.2013.05.017
– volume: 22
  year: 2021
  ident: e_1_2_10_218_1
  article-title: Multifunctional SDF‐1‐loaded hydroxyapatite/polylactic acid membranes promote cell recruitment, immunomodulation, angiogenesis, and osteogenesis for biomimetic bone regeneration
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2021.100942
– volume: 52
  start-page: 135
  issue: 1
  year: 2017
  ident: e_1_2_10_87_1
  article-title: Human periodontal ligament stem cells suppress T‐cell proliferation via down‐regulation of non‐classical major histocompatibility complex‐like glycoprotein CD1b on dendritic cells
  publication-title: J Periodontal Res
  doi: 10.1111/jre.12378
– volume: 10
  year: 2022
  ident: e_1_2_10_104_1
  article-title: Roles of the fibroblast growth factor signal transduction system in tissue injury repair
  publication-title: Burns Trauma
  doi: 10.1093/burnst/tkac005
– volume: 10
  year: 2023
  ident: e_1_2_10_121_1
  article-title: Barrier membranes for periodontal guided bone regeneration: a potential therapeutic strategy
  publication-title: Fronti Mater
  doi: 10.3389/fmats.2023.1220420
– volume: 5
  start-page: 1
  issue: 1
  year: 2020
  ident: e_1_2_10_163_1
  article-title: Porous scaffolds for bone regeneration
  publication-title: J Sci:Adv Mater Devices
– volume: 11
  year: 2021
  ident: e_1_2_10_74_1
  article-title: The role of neutrophil extracellular traps in periodontitis
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2021.639144
– volume: 8
  start-page: 115
  issue: 4
  year: 2016
  ident: e_1_2_10_25_1
  article-title: Biodegradable polymer membranes applied in guided bone/tissue Regeneration: a review
  publication-title: Polymers
  doi: 10.3390/polym8040115
– volume: 9
  start-page: 5191
  year: 2018
  ident: e_1_2_10_45_1
  article-title: Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07666-0
– volume: 25
  start-page: 4510
  issue: 8
  year: 2024
  ident: e_1_2_10_71_1
  article-title: Differential response of human dendritic cells upon stimulation with encapsulated or non‐encapsulated isogenic strains of Porphyromonas gingivalis
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms25084510
– volume: 286
  year: 2022
  ident: e_1_2_10_215_1
  article-title: Immunomodulatory strategies for bone regeneration: a review from the perspective of disease types
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121604
– volume: 14
  year: 2023
  ident: e_1_2_10_109_1
  article-title: NADPH‐dependent ROS accumulation contributes to the impaired osteogenic differentiation of periodontal ligament stem cells under high glucose conditions
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2023.1152845
– volume: 58
  year: 2024
  ident: e_1_2_10_209_1
  article-title: A self‐powered electret nanogenerator coordinates nerve‐ and bone‐repair microenvironments for bone regeneration
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2024.102430
– volume: 59
  start-page: 167
  issue: 2
  year: 2014
  ident: e_1_2_10_88_1
  article-title: Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro‐inflammatory cytokine production in human periodontal ligament stem cells
  publication-title: Arch Oral Biol
  doi: 10.1016/j.archoralbio.2013.11.008
– volume: 29
  start-page: 32
  year: 2018
  ident: e_1_2_10_90_1
  article-title: Effects of soft tissue augmentation procedures on peri‐implant health or disease: a systematic review and meta‐analysis
  publication-title: Clin Oral Implants Res
  doi: 10.1111/clr.13114
– volume: 19
  start-page: 15345
  issue: 16
  year: 2025
  ident: e_1_2_10_98_1
  article-title: Engineered macrophage membrane‐camouflaged nanodecoys reshape the infectious microenvironment for efficient periodontitis treatment
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c14305
– volume: 12
  year: 2022
  ident: e_1_2_10_214_1
  article-title: Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2022.908859
– volume: 99
  start-page: 4805
  issue: 12
  year: 2010
  ident: e_1_2_10_230_1
  article-title: A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles
  publication-title: J Pharm Sci
  doi: 10.1002/jps.22189
– volume: 15
  start-page: 1097
  issue: 5
  year: 2019
  ident: e_1_2_10_228_1
  article-title: Development of an antibacterial bone graft by immobilization of levofloxacin hydrochloride‐loaded mesoporous silica microspheres on a porous scaffold surface
  publication-title: J Biomed Nanotechnol
  doi: 10.1166/jbn.2019.2743
– volume: 29
  start-page: 1515
  issue: 11
  year: 2022
  ident: e_1_2_10_46_1
  article-title: Reciprocal regulation of mesenchymal stem cells and immune responses
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2022.10.001
– volume: 276
  year: 2021
  ident: e_1_2_10_224_1
  article-title: Mussel patterned with 4D biodegrading elastomer durably recruits regenerative macrophages to promote regeneration of craniofacial bone
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120998
– volume: 93
  start-page: 9
  issue: 1
  year: 2023
  ident: e_1_2_10_14_1
  article-title: Guided bone regeneration in implant dentistry: basic principle, progress over 35 years, and recent research activities
  publication-title: Periodontol 2000
  doi: 10.1111/prd.12539
– volume: 29
  start-page: 1161
  issue: 8
  year: 2022
  ident: e_1_2_10_91_1
  article-title: Wound healing, fibroblast heterogeneity, and fibrosis
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2022.07.006
– volume: 11
  start-page: 667
  issue: 5
  year: 1996
  ident: e_1_2_10_38_1
  article-title: A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications
  publication-title: Int J Oral Maxillofac Implants
– volume: 23
  start-page: 1502
  issue: 23
  year: 2017
  ident: e_1_2_10_169_1
  article-title: Engineering membranes for bone regeneration
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2017.0094
– volume: 226
  year: 2023
  ident: e_1_2_10_31_1
  article-title: Underestimated microbial infection of resorbable membranes on guided regeneration
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2023.113318
– volume: 23
  start-page: 225
  issue: 1
  year: 2025
  ident: e_1_2_10_5_1
  article-title: Mediation of systemic inflammation response index in the association of healthy eating index‐2020 in patient is with periodontitis
  publication-title: Oral Hlth Prev Dent
– volume: 35
  start-page: 101
  issue: 1
  year: 2004
  ident: e_1_2_10_92_1
  article-title: Antigens of bacteria associated with periodontitis
  publication-title: Periodontol 2000
  doi: 10.1111/j.0906-6713.2004.003559.x
– volume: 39
  start-page: 400
  issue: 4
  year: 2012
  ident: e_1_2_10_202_1
  article-title: Atmospheric plasma enhances wettability and cell spreading on dental implant metals
  publication-title: J Clin Periodontol
  doi: 10.1111/j.1600-051X.2012.01853.x
– volume: 30
  start-page: 1175
  issue: 5
  year: 2015
  ident: e_1_2_10_156_1
  article-title: An experimental study on guided bone Regeneration using a polylactide‐co‐glycolide membrane‐immobilized conditioned medium
  publication-title: Int J Oral Maxillofac Implants
  doi: 10.11607/jomi.3915
– volume: 10
  start-page: 3491
  year: 2019
  ident: e_1_2_10_166_1
  article-title: Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano‐responsiveness in 3D
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11397-1
– volume: 14
  start-page: 7687
  issue: 1
  year: 2023
  ident: e_1_2_10_239_1
  article-title: Occlusive membranes for guided regeneration of inflamed tissue defects
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-43428-3
– volume: 19
  start-page: 151
  year: 1999
  ident: e_1_2_10_21_1
  article-title: Localized ridge augmentation with autografts and barrier membranes
  publication-title: Periodontol 2000
  doi: 10.1111/j.1600-0757.1999.tb00153.x
– volume: 67
  start-page: 1218
  issue: 6
  year: 2009
  ident: e_1_2_10_22_1
  article-title: Barrier membranes used for ridge augmentation: is there an optimal pore size?
  publication-title: J Oral Maxillofac Surg
  doi: 10.1016/j.joms.2008.11.022
– volume: 178
  year: 2021
  ident: e_1_2_10_79_1
  article-title: Local delivery strategies to restore immune homeostasis in the context of inflammation
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2021.113971
– volume: 222
  year: 2023
  ident: e_1_2_10_108_1
  article-title: Multifunctional barrier membranes promote bone regeneration by scavenging H2O2, generating O2, eliminating inflammation, and regulating immune response
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2023.113147
– volume: 24
  start-page: 824
  issue: 9
  year: 2016
  ident: e_1_2_10_158_1
  article-title: Guiding bone regeneration using hydrophobized silk fibroin nanofiber membranes
  publication-title: Macromol Res
  doi: 10.1007/s13233-016-4109-2
– volume: 8
  start-page: 1339
  issue: 9
  year: 2019
  ident: e_1_2_10_97_1
  article-title: Importance of virulence factors for the persistence of Oral bacteria in the inflamed gingival crevice and in the pathogenesis of periodontal disease
  publication-title: J Clin Med
  doi: 10.3390/jcm8091339
– volume: 11
  year: 2021
  ident: e_1_2_10_76_1
  article-title: Interactions between neutrophils and periodontal pathogens in late‐onset periodontitis
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2021.627328
– volume: 198
  year: 2021
  ident: e_1_2_10_191_1
  article-title: Ca ions chelation, collagen I incorporation and 3D bionic PLGA/PCL electrospun architecture to enhance osteogenic differentiation
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2020.109300
– volume: 96
  start-page: 349
  issue: 2
  year: 2014
  ident: e_1_2_10_73_1
  article-title: B cells promote obesity‐associated periodontitis and oral pathogen‐associated inflammation
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.4A0214-095R
– volume: 21
  start-page: 3283
  issue: 9
  year: 2020
  ident: e_1_2_10_81_1
  article-title: Spatiotemporal regulation of signaling: focus on T cell activation and the immunological synapse
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21093283
– volume: 130
  year: 2024
  ident: e_1_2_10_199_1
  article-title: Synergistic effect of electrophysiological microenvironment and bioactive ions for enhancing bone regeneration
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.110113
– volume: 13
  issue: 29
  year: 2024
  ident: e_1_2_10_160_1
  article-title: Cellular scale curvature in bioceramic scaffolds enhanced bone regeneration by regulating skeletal stem cells and vascularization
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.202401667
– volume: 16
  start-page: 36077
  issue: 28
  year: 2024
  ident: e_1_2_10_101_1
  article-title: ZIF‐8‐based nanoparticles for Inflammation treatment and oxidative stress reduction in periodontitis
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.4c05722
– volume: 19
  start-page: 7751
  year: 2024
  ident: e_1_2_10_193_1
  article-title: Bioactive materials that promote the homing of endogenous mesenchymal stem cells to improve wound healing
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S455469
– volume: 12
  start-page: 1545
  issue: 7
  year: 2018
  ident: e_1_2_10_140_1
  article-title: Using biomimetically mineralized collagen membranes with different surface stiffness to guide regeneration of bone defects
  publication-title: J Tissue Eng Regen Med
  doi: 10.1002/term.2670
– ident: e_1_2_10_8_1
  doi: 10.1111/prd.12619
– volume: 6
  start-page: 1187
  issue: 10
  year: 2011
  ident: e_1_2_10_34_1
  article-title: Polymeric membranes for guided bone regeneration
  publication-title: Biotechnol J
  doi: 10.1002/biot.201100294
– volume: 108
  start-page: 350
  issue: 3
  year: 2020
  ident: e_1_2_10_70_1
  article-title: IL‐10 secreting B cells regulate periodontal immune response during periodontitis
  publication-title: Odontology
  doi: 10.1007/s10266-019-00470-2
– volume: 23
  start-page: 1132
  issue: 19
  year: 2017
  ident: e_1_2_10_153_1
  article-title: Bone morphogenetic protein 2 alters osteogenesis and anti‐inflammatory profiles of mesenchymal stem cells induced by microtextured titanium in vitro
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2017.0003
– volume: 5
  start-page: 36
  issue: 1
  year: 2023
  ident: e_1_2_10_176_1
  article-title: Guided bone regeneration in long‐bone defect with a bilayer mineralized collagen membrane
  publication-title: Collagen Leather
  doi: 10.1186/s42825-023-00144-4
– volume: 21
  start-page: 4945
  issue: 12
  year: 2020
  ident: e_1_2_10_189_1
  article-title: Dual oral tissue adhesive nanofiber membranes for pH‐responsive delivery of antimicrobial peptides
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.0c01163
– volume: 10
  year: 2022
  ident: e_1_2_10_84_1
  article-title: Stem cell homing in periodontal tissue regeneration
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2022.1017613
– volume: 49
  start-page: 85
  year: 2025
  ident: e_1_2_10_204_1
  article-title: From hard tissues to beyond: progress and challenges of strontium‐containing biomaterials in regenerative medicine applications
  publication-title: Bioact Mater
– volume: 86
  start-page: 157
  issue: 1
  year: 2021
  ident: e_1_2_10_43_1
  article-title: Maintaining homeostatic control of periodontal bone tissue
  publication-title: Periodontol 2000
  doi: 10.1111/prd.12368
– volume: 11
  year: 2023
  ident: e_1_2_10_159_1
  article-title: Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2023.1117954
– volume: 18
  start-page: 2151
  issue: 9
  year: 2014
  ident: e_1_2_10_229_1
  article-title: Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria
  publication-title: Clin Oral Investig
  doi: 10.1007/s00784-014-1201-x
– volume: 12
  start-page: 5032
  issue: 1
  year: 2022
  ident: e_1_2_10_67_1
  article-title: Local induction of regulatory T cells prevents inflammatory bone loss in ligature‐induced experimental periodontitis in mice
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-09150-8
– volume: 95
  start-page: 319
  issue: 3
  year: 2016
  ident: e_1_2_10_154_1
  article-title: Topography influences adherent cell regulation of Osteoclastogenesis
  publication-title: J Dent Res
  doi: 10.1177/0022034515616760
– volume: 24
  year: 2024
  ident: e_1_2_10_227_1
  article-title: A multifunctional quercetin/polycaprolactone electrospun fibrous membrane for periodontal bone regeneration
  publication-title: Mater Today Bio
  doi: 10.1016/j.mtbio.2023.100906
– volume: 46
  start-page: 52
  year: 2019
  ident: e_1_2_10_116_1
  article-title: Osteoimmunology: inflammatory osteolysis and regeneration of the alveolar bone
  publication-title: J Clin Periodontol
  doi: 10.1111/jcpe.13056
– volume: 51
  start-page: 233
  issue: 2
  year: 2024
  ident: e_1_2_10_69_1
  article-title: Interleukin‐17 alleviates erastin‐induced alveolar bone loss by suppressing ferroptosis via interaction between NRF2 and p‐STAT3
  publication-title: J Clin Periodontol
  doi: 10.1111/jcpe.13898
– volume: 9
  start-page: 701
  year: 2018
  ident: e_1_2_10_68_1
  article-title: Host defense against oral microbiota by bone‐damaging T cells
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03147-6
– volume: 93
  start-page: 254
  issue: 1
  year: 2023
  ident: e_1_2_10_17_1
  article-title: Do autologous platelet concentrates (APCs) have a role in intra‐oral bone regeneration? A critical review of clinical guidelines on decision‐making process
  publication-title: Periodontol 2000
  doi: 10.1111/prd.12526
– volume: 8
  start-page: 56
  year: 2014
  ident: e_1_2_10_170_1
  article-title: Mechanisms of guided bone regeneration: a review
  publication-title: Open Dent J
  doi: 10.2174/1874210601408010056
– volume: 489
  year: 2025
  ident: e_1_2_10_186_1
  article-title: Glycated walnut peptide‐calcium chelates: structural properties, calcium absorption enhancement mechanism, and osteogenic effects
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2025.145039
– volume: 9
  year: 2021
  ident: e_1_2_10_95_1
  article-title: Periodontal Inflammation‐triggered by periodontal ligament stem cell Pyroptosis exacerbates periodontitis
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.663037
– volume: 93
  start-page: 1445
  issue: 10
  year: 2022
  ident: e_1_2_10_3_1
  article-title: Global, regional, and national burden of periodontitis from 1990 to 2019: results from the global burden of disease study 2019
  publication-title: J Periodontol
  doi: 10.1002/JPER.21-0469
– volume: 1
  start-page: 46
  year: 1993
  ident: e_1_2_10_20_1
  article-title: Clinical applications of guided tissue regeneration: surgical considerations
  publication-title: Periodontol 2000
  doi: 10.1111/j.1600-0757.1993.tb00206.x
– volume: 26
  start-page: 229
  issue: 2
  year: 2011
  ident: e_1_2_10_48_1
  article-title: The amazing osteocyte
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.320
– volume: 6
  start-page: 1007
  issue: 5
  year: 2018
  ident: e_1_2_10_133_1
  article-title: The osteoimmunomodulatory property of a barrier collagen membrane and its manipulation via coating nanometer‐sized bioactive glass to improve guided bone regeneration
  publication-title: Biomater Sci
  doi: 10.1039/C7BM00869D
– volume: 8
  issue: 3
  year: 2023
  ident: e_1_2_10_190_1
  article-title: Cell recognitive bioadhesive‐based osteogenic barrier coating with localized delivery of bone morphogenetic protein‐2 for accelerated guided bone regeneration
  publication-title: Bioeng Transl Med
  doi: 10.1002/btm2.10493
– volume: 66
  start-page: 1
  issue: 1
  year: 2022
  ident: e_1_2_10_53_1
  article-title: Biological basis of periodontal Regeneration
  publication-title: Dent Clin N Am
  doi: 10.1016/j.cden.2021.08.001
– volume: 94
  start-page: 112
  year: 2019
  ident: e_1_2_10_143_1
  article-title: Nano‐scale modification of titanium implant surfaces to enhance osseointegration
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2019.05.045
– volume: 19
  start-page: 2917
  year: 2024
  ident: e_1_2_10_100_1
  article-title: Electrospun L‐lysine/amorphous calcium phosphate loaded Core‐sheath nanofibers for managing Oral biofilm infections and promoting periodontal tissue repairment
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S453702
– volume: 14
  start-page: 44111
  issue: 39
  year: 2022
  ident: e_1_2_10_147_1
  article-title: Enhanced cell osteogenesis and osteoimmunology regulated by piezoelectric biomaterials with controllable surface potential and charges
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c11131
– volume: 11
  issue: 46
  year: 2024
  ident: e_1_2_10_195_1
  article-title: Bmi‐1 epigenetically orchestrates osteogenic and Adipogenic differentiation of bone marrow mesenchymal stem cells to delay bone aging
  publication-title: Adv Sci
  doi: 10.1002/advs.202404518
– volume: 51
  start-page: 7476
  issue: 13
  year: 2017
  ident: e_1_2_10_36_1
  article-title: Enzymatic hydrolysis of polyester thin films at the nanoscale: effects of polyester structure and enzyme active‐site accessibility
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b01330
– volume: 31
  issue: 37
  year: 2021
  ident: e_1_2_10_120_1
  article-title: Sculpting bio‐inspired surface textures: an adhesive Janus periosteum
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202104636
– volume: 20
  start-page: 1293
  issue: 14
  year: 1999
  ident: e_1_2_10_136_1
  article-title: The effect of poly‐L‐lactic acid with parallel surface micro groove on osteoblast‐like cells in vitro
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00029-0
– volume: 16
  start-page: 3075
  issue: 18
  year: 2024
  ident: e_1_2_10_96_1
  article-title: Akkermansia muciniphila as a potential Guardian against oral health diseases: a narrative review
  publication-title: Nutrients
  doi: 10.3390/nu16183075
– volume: 23
  start-page: 141
  issue: 1
  year: 2025
  ident: e_1_2_10_113_1
  article-title: The effect of patient‐related factors age, sex, implant location, and periodontitis on crestal bone loss in the posterior ridge: a retrospective study
  publication-title: Oral Hlth Prev Dent
– volume: 8
  issue: 8
  year: 2024
  ident: e_1_2_10_182_1
  article-title: Application of bioactive materials for osteogenic function in bone tissue engineering
  publication-title: Small Methods
  doi: 10.1002/smtd.202301283
– volume: 450
  year: 2022
  ident: e_1_2_10_126_1
  article-title: 3D printed long‐term structurally stable bioceramic dome scaffolds with controllable biodegradation favorable for guided bone regeneration
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.138003
– ident: e_1_2_10_10_1
  doi: 10.1111/prd.12568
– volume: 287
  start-page: 226
  issue: 1
  year: 2019
  ident: e_1_2_10_75_1
  article-title: Primary immunodeficiencies reveal the essential role of tissue neutrophils in periodontitis
  publication-title: Immunol Rev
  doi: 10.1111/imr.12724
– volume: 11
  start-page: rbae058
  year: 2024
  ident: e_1_2_10_222_1
  article-title: Polyphenols‐based intelligent oral barrier membranes for periodontal bone defect reconstruction
  publication-title: Regener Biomater
  doi: 10.1093/rb/rbae058
– volume: 8
  start-page: 20739
  issue: 23
  year: 2023
  ident: e_1_2_10_80_1
  article-title: Rapamycin inhibits Osteoclastogenesis and prevents LPS‐induced alveolar bone loss by oxidative stress suppression
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c01289
– volume: 36
  start-page: 258
  issue: 3
  year: 2009
  ident: e_1_2_10_11_1
  article-title: Regenerative potential and healing dynamics of the periodontium: a critical‐size supra‐alveolar periodontal defect study
  publication-title: J Clin Periodontol
  doi: 10.1111/j.1600-051X.2008.01369.x
– volume: 89
  start-page: 164
  issue: 2
  year: 2000
  ident: e_1_2_10_23_1
  article-title: Efficacy of high‐density versus semipermeable PTFE membranes in an elderly experimental model
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
  doi: 10.1067/moe.2000.98922
– volume: 96
  start-page: 281
  issue: 1
  year: 2024
  ident: e_1_2_10_102_1
  article-title: Inflammation indices in association with periodontitis and cancer
  publication-title: Periodontol 2000
  doi: 10.1111/prd.12612
– volume: 13
  start-page: 89
  issue: 1
  year: 2023
  ident: e_1_2_10_82_1
  article-title: Polysulfone membranes doped with human neutrophil elastase inhibitors: assessment of bioactivity and biocompatibility
  publication-title: Membranes
  doi: 10.3390/membranes13010089
– volume: 260
  year: 2021
  ident: e_1_2_10_179_1
  article-title: Electrospun polyamide‐6/chitosan nanofibers reinforced nano‐hydroxyapatite/polyamide‐6 composite bilayered membranes for guided bone regeneration
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2021.117769
– volume: 13
  issue: 12
  year: 2024
  ident: e_1_2_10_192_1
  article-title: Hierarchical scaffold with directional microchannels promotes cell ingrowth for bone Regeneration
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.202303600
– volume: 18
  start-page: 1
  year: 2018
  ident: e_1_2_10_77_1
  article-title: Characterization of oral polymorphonuclear neutrophils in periodontitis patients: a case‐control study
  publication-title: BMC Oral Health
– volume: 7
  issue: 19
  year: 2018
  ident: e_1_2_10_151_1
  article-title: Unveiling the mechanism of surface hydrophilicity‐modulated macrophage polarization
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201800675
SSID ssj0017935
Score 2.458158
SecondaryResourceType review_article
online_first
Snippet Guided tissue regeneration (GTR) and guided bone regeneration (GBR) membranes are critical for reconstructing periodontal/bone defects, but existing membranes...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Title Functional requirements for guided bone regeneration/guided tissue regeneration membrane design: Progress and challenges
URI https://www.ncbi.nlm.nih.gov/pubmed/41221631
https://www.proquest.com/docview/3271086071
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1600-0757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017935
  issn: 0906-6713
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF7RFtFeEO-GR7UgbpVFvHa8a26IEnGooqhqpdwiex9pEHGiJEbh3zOzD9s5RIIDFyvacezsfJPZmd15EPKxb7COF9MRB9crSrO-iMokVxE2u9Ki0EIlrtkEH43EZJKPffz8xrYT4FUldrt89V-hhjEAG1Nn_wHu5qEwAJ8BdLgC7HD9K-CHsFL5Db61xjhf7bLYMJ5wVs8VmpzLCrulzGzJaRvdwYaetLVA7BEvF3oBPnWFGVYY7oGbCGMM60IladPiQkOWTdfUHcNkweettq7KEybrdHep7ZpXz3_WzR6PbS98eVPPf4DIzu5bsR25ztrF8r5YhrFrPzb_7e_zOxdsgCl8PmZaO22bYVo7dxWqD-hyrIOJZ-N59x6Y6Gph8UtjxsCkjNvlrAkyDKQjcsL4IAeVd3J1M7y7bg6ZQDUNfLEpDO5q3nRGHoXv7lsrB1wQa4rcPiGPvQ9Bvzjsn5IHunpGTq8w7gtb9z0nu1YGaFcGKMgAdUBTlAHahfmTJzgJ2CPRIAHUScBnGvCngD9t8X9B7obfbr9-j3yLjUjGGdtGSb-U4JOmWshY8jIThiVp2S9kVqqEKW0U5zlPuMhlKaQyUvAyVpmAvz43RuvkJTmu4PeeExqzzKhUxUabQSqlyVVRSHiwAJu5YIXpkQ-BldOVq6QyDR4osH5qWd8j7wOTp6Dn8PAKJresN9OEcWwKBhZxj7xy3G8eE9B6fZDyhpy1EviWHG_XtX5HHspfwNP1BTniE3HhxeMPKjOAkg
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+requirements+for+guided+bone+regeneration%2Fguided+tissue+regeneration+membrane+design%3A+Progress+and+challenges&rft.jtitle=Periodontology+2000&rft.au=Zhan%2C+Huilu&rft.au=Shi%2C+Ruijianghan&rft.au=Ni%2C+Haohao&rft.au=Li%2C+Haiyan&rft.date=2025-11-12&rft.eissn=1600-0757&rft_id=info:doi/10.1111%2Fprd.70019&rft_id=info%3Apmid%2F41221631&rft.externalDocID=41221631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0906-6713&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0906-6713&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0906-6713&client=summon