The Optimized Algorithm of Finding the Shortest Path in a Multiple Graph
In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect 2 or $(k+1)$ vertices, correspondingly. The linked ed...
Uloženo v:
| Vydáno v: | Modelirovanie i analiz informacionnyh sistem Ročník 30; číslo 1; s. 6 - 15 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Yaroslavl State University
28.04.2023
|
| Témata: | |
| ISSN: | 1818-1015, 2313-5417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect 2 or $(k+1)$ vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges and it can be the common end of $k$ linked edges of some multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of another multi-edge.
As for an ordinary graph, we can define the integer function of the length of an edge for a multiple graph and set the problem of the shortest path joining two vertices. Any multiple path is a union of $k$ ordinary paths, which are adjusted on the linked edges of all multiple and multi-edges.
In the article, we optimize the algorithm of finding the shortest path in an arbitrary multiple graph, which was obtained earlier. We show that the optimized algorithm is polynomial. Thus, the problem of the shortest path is polynomial for any multiple graph. |
|---|---|
| AbstractList | In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect 2 or $(k+1)$ vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges and it can be the common end of $k$ linked edges of some multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of another multi-edge. As for an ordinary graph, we can define the integer function of the length of an edge for a multiple graph and set the problem of the shortest path joining two vertices. Any multiple path is a union of $k$ ordinary paths, which are adjusted on the linked edges of all multiple and multi-edges. In the article, we optimize the algorithm of finding the shortest path in an arbitrary multiple graph, which was obtained earlier. We show that the optimized algorithm is polynomial. Thus, the problem of the shortest path is polynomial for any multiple graph. In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect 2 or $(k+1)$ vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges and it can be the common end of $k$ linked edges of some multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of another multi-edge. As for an ordinary graph, we can define the integer function of the length of an edge for a multiple graph and set the problem of the shortest path joining two vertices. Any multiple path is a union of $k$ ordinary paths, which are adjusted on the linked edges of all multiple and multi-edges. In the article, we optimize the algorithm of finding the shortest path in an arbitrary multiple graph, which was obtained earlier. We show that the optimized algorithm is polynomial. Thus, the problem of the shortest path is polynomial for any multiple graph. |
| Author | Smirnov, Alexander Valeryevich |
| Author_xml | – sequence: 1 givenname: Alexander Valeryevich orcidid: 0000-0002-0980-2507 surname: Smirnov fullname: Smirnov, Alexander Valeryevich organization: P. G. Demidov Yaroslavl State University |
| BookMark | eNo9kF1LwzAUhoMoOOf-guQPVHOSnLS9HMN9wGSC8zokbbJGurak9UJ_vd0mu3rh8PKcl-eB3DZt4wh5AvYMGUd8gQyyBBhgwhkXCSQqAbwhEy5AJCghvSWTa-eezPo-WCZlikJgOiHrfeXorhvCMfy6ks7rQxvDUB1p6-kyNGVoDnQYKx9VGwfXD_TdDBUNDTX07bseQlc7uoqmqx7JnTd172b_OSWfy9f9Yp1sd6vNYr5NClDjSJlbj6VFn3tlrS1NipbnhTKcMRDC8ZyhKcCbzCPjwISQmclT8ClYTFGKKdlcuGVrvnQXw9HEH92aoM-HNh60iUMoaqdROWuVgQIyIS3zVknJuTHj35ShsiNLXVhFbPs-On_lAdNnvfqkTp_U6ZNeDVppQPEH6QVt5A |
| Cites_doi | 10.3103/S0146411618070234 10.1002/nav.3800020109 10.1007/BF01386390 10.1137/0105003 10.18255/1818-1015-2022-4-372-387 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.18255/1818-1015-2023-1-6-15 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2313-5417 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_56ebb6a1c1834b0fb64422aabbb7056b 10_18255_1818_1015_2023_1_6_15 |
| GroupedDBID | 5VS 642 AAFWJ AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 |
| ID | FETCH-LOGICAL-c1615-49bf5db5f9f6bbbda75b29c6a200133e2905ac1fa8f502103348a971f71b57543 |
| IEDL.DBID | DOA |
| ISSN | 1818-1015 |
| IngestDate | Fri Oct 03 12:51:15 EDT 2025 Sat Nov 29 02:26:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://www.mais-journal.ru/jour/about/editorialPolicies#openAccessPolicy |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1615-49bf5db5f9f6bbbda75b29c6a200133e2905ac1fa8f502103348a971f71b57543 |
| ORCID | 0000-0002-0980-2507 |
| OpenAccessLink | https://doaj.org/article/56ebb6a1c1834b0fb64422aabbb7056b |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_56ebb6a1c1834b0fb64422aabbb7056b crossref_primary_10_18255_1818_1015_2023_1_6_15 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-28 |
| PublicationDateYYYYMMDD | 2023-04-28 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Modelirovanie i analiz informacionnyh sistem |
| PublicationYear | 2023 |
| Publisher | Yaroslavl State University |
| Publisher_xml | – name: Yaroslavl State University |
| References | ref2 ref1 ref4 ref3 ref5 |
| References_xml | – ident: ref1 doi: 10.3103/S0146411618070234 – ident: ref4 doi: 10.1002/nav.3800020109 – ident: ref3 doi: 10.1007/BF01386390 – ident: ref5 doi: 10.1137/0105003 – ident: ref2 doi: 10.18255/1818-1015-2022-4-372-387 |
| SSID | ssib044753357 ssib009050552 ssib059259322 ssib006738434 ssj0001879522 |
| Score | 2.217663 |
| Snippet | In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 6 |
| SubjectTerms | multiple graph multiple path polynomial algorithm reachability set shortest path |
| Title | The Optimized Algorithm of Finding the Shortest Path in a Multiple Graph |
| URI | https://doaj.org/article/56ebb6a1c1834b0fb64422aabbb7056b |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-5417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001879522 issn: 1818-1015 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-5417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044753357 issn: 1818-1015 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcDCN6J8yQOr1TqJk3gsqKUDLZUAqZtlOzGNRFvUBgYGfjt3TlplY2HJYEWR8nzxvYvP7xFy60XBEpOwPOJQoNiYM2nTjEWZCLNIo2SUF3F9TMbjdDqVk4bVF_aEVfLAFXAdEefGxJpbiL3IdJ2BBB4EWhtjEkjeBldfYD2NYqraXwzTpvCZRMM2sU3kqHIXNoTYhIQqIKyF7PzfGfTg9lsQkAFR_5SL-ngxVFSisx1k6D4OVVjM0Fe3kdkaBgA-Uw0OyX5NMWmverUjspMvjsnBxr6B1l_zCRlCiNAnWDLmxXee0d7723JVlLM5XTo6KPxpFwr0kD7PsCF3XdIJsEVaLKimo7oNkT6g3vUpeR30X-6HrDZWYBYJHoukcSIzwkkXA46ZToQJpI01NliFYR4AXNpyp1MnsCbE07paJtwl3AC9i8Iz0losF_k5oWieLmIbpN64xAQa5W1wwpzTwGV4m3Q2oKiPSj9DYd2BMCqEEXvMhEIYFVex4qJN7hC77d2of-0HICpUHRXqr6i4-I-HXJI9P73diAXpFWmVq8_8muzar7JYr258wMF19NP_BQASzfU |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Optimized+Algorithm+of+Finding+the+Shortest+Path+in+a+Multiple+Graph&rft.jtitle=Modelirovanie+i+analiz+informacionnyh+sistem&rft.au=Alexander+Valeryevich+Smirnov&rft.date=2023-04-28&rft.pub=Yaroslavl+State+University&rft.issn=1818-1015&rft.eissn=2313-5417&rft.volume=30&rft.issue=1&rft.spage=6&rft.epage=15&rft_id=info:doi/10.18255%2F1818-1015-2023-1-6-15&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_56ebb6a1c1834b0fb64422aabbb7056b |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1818-1015&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1818-1015&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1818-1015&client=summon |