The Optimized Algorithm of Finding the Shortest Path in a Multiple Graph

In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect 2 or $(k+1)$ vertices, correspondingly. The linked ed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Modelirovanie i analiz informacionnyh sistem Ročník 30; číslo 1; s. 6 - 15
Hlavní autor: Smirnov, Alexander Valeryevich
Médium: Journal Article
Jazyk:angličtina
Vydáno: Yaroslavl State University 28.04.2023
Témata:
ISSN:1818-1015, 2313-5417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect 2 or $(k+1)$ vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges and it can be the common end of $k$ linked edges of some multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of another multi-edge. As for an ordinary graph, we can define the integer function of the length of an edge for a multiple graph and set the problem of the shortest path joining two vertices. Any multiple path is a union of $k$ ordinary paths, which are adjusted on the linked edges of all multiple and multi-edges. In the article, we optimize the algorithm of finding the shortest path in an arbitrary multiple graph, which was obtained earlier. We show that the optimized algorithm is polynomial. Thus, the problem of the shortest path is polynomial for any multiple graph.
AbstractList In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect 2 or $(k+1)$ vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges and it can be the common end of $k$ linked edges of some multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of another multi-edge. As for an ordinary graph, we can define the integer function of the length of an edge for a multiple graph and set the problem of the shortest path joining two vertices. Any multiple path is a union of $k$ ordinary paths, which are adjusted on the linked edges of all multiple and multi-edges. In the article, we optimize the algorithm of finding the shortest path in an arbitrary multiple graph, which was obtained earlier. We show that the optimized algorithm is polynomial. Thus, the problem of the shortest path is polynomial for any multiple graph.
In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect 2 or $(k+1)$ vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges and it can be the common end of $k$ linked edges of some multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of another multi-edge. As for an ordinary graph, we can define the integer function of the length of an edge for a multiple graph and set the problem of the shortest path joining two vertices. Any multiple path is a union of $k$ ordinary paths, which are adjusted on the linked edges of all multiple and multi-edges. In the article, we optimize the algorithm of finding the shortest path in an arbitrary multiple graph, which was obtained earlier. We show that the optimized algorithm is polynomial. Thus, the problem of the shortest path is polynomial for any multiple graph.
Author Smirnov, Alexander Valeryevich
Author_xml – sequence: 1
  givenname: Alexander Valeryevich
  orcidid: 0000-0002-0980-2507
  surname: Smirnov
  fullname: Smirnov, Alexander Valeryevich
  organization: P. G. Demidov Yaroslavl State University
BookMark eNo9kF1LwzAUhoMoOOf-guQPVHOSnLS9HMN9wGSC8zokbbJGurak9UJ_vd0mu3rh8PKcl-eB3DZt4wh5AvYMGUd8gQyyBBhgwhkXCSQqAbwhEy5AJCghvSWTa-eezPo-WCZlikJgOiHrfeXorhvCMfy6ks7rQxvDUB1p6-kyNGVoDnQYKx9VGwfXD_TdDBUNDTX07bseQlc7uoqmqx7JnTd172b_OSWfy9f9Yp1sd6vNYr5NClDjSJlbj6VFn3tlrS1NipbnhTKcMRDC8ZyhKcCbzCPjwISQmclT8ClYTFGKKdlcuGVrvnQXw9HEH92aoM-HNh60iUMoaqdROWuVgQIyIS3zVknJuTHj35ShsiNLXVhFbPs-On_lAdNnvfqkTp_U6ZNeDVppQPEH6QVt5A
Cites_doi 10.3103/S0146411618070234
10.1002/nav.3800020109
10.1007/BF01386390
10.1137/0105003
10.18255/1818-1015-2022-4-372-387
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.18255/1818-1015-2023-1-6-15
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2313-5417
EndPage 15
ExternalDocumentID oai_doaj_org_article_56ebb6a1c1834b0fb64422aabbb7056b
10_18255_1818_1015_2023_1_6_15
GroupedDBID 5VS
642
AAFWJ
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
ID FETCH-LOGICAL-c1615-49bf5db5f9f6bbbda75b29c6a200133e2905ac1fa8f502103348a971f71b57543
IEDL.DBID DOA
ISSN 1818-1015
IngestDate Fri Oct 03 12:51:15 EDT 2025
Sat Nov 29 02:26:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.mais-journal.ru/jour/about/editorialPolicies#openAccessPolicy
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1615-49bf5db5f9f6bbbda75b29c6a200133e2905ac1fa8f502103348a971f71b57543
ORCID 0000-0002-0980-2507
OpenAccessLink https://doaj.org/article/56ebb6a1c1834b0fb64422aabbb7056b
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_56ebb6a1c1834b0fb64422aabbb7056b
crossref_primary_10_18255_1818_1015_2023_1_6_15
PublicationCentury 2000
PublicationDate 2023-04-28
PublicationDateYYYYMMDD 2023-04-28
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-28
  day: 28
PublicationDecade 2020
PublicationTitle Modelirovanie i analiz informacionnyh sistem
PublicationYear 2023
Publisher Yaroslavl State University
Publisher_xml – name: Yaroslavl State University
References ref2
ref1
ref4
ref3
ref5
References_xml – ident: ref1
  doi: 10.3103/S0146411618070234
– ident: ref4
  doi: 10.1002/nav.3800020109
– ident: ref3
  doi: 10.1007/BF01386390
– ident: ref5
  doi: 10.1137/0105003
– ident: ref2
  doi: 10.18255/1818-1015-2022-4-372-387
SSID ssib044753357
ssib009050552
ssib059259322
ssib006738434
ssj0001879522
Score 2.217663
Snippet In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 6
SubjectTerms multiple graph
multiple path
polynomial algorithm
reachability set
shortest path
Title The Optimized Algorithm of Finding the Shortest Path in a Multiple Graph
URI https://doaj.org/article/56ebb6a1c1834b0fb64422aabbb7056b
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-5417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001879522
  issn: 1818-1015
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-5417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044753357
  issn: 1818-1015
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcDCN6J8yQOr1TqJk3gsqKUDLZUAqZtlOzGNRFvUBgYGfjt3TlplY2HJYEWR8nzxvYvP7xFy60XBEpOwPOJQoNiYM2nTjEWZCLNIo2SUF3F9TMbjdDqVk4bVF_aEVfLAFXAdEefGxJpbiL3IdJ2BBB4EWhtjEkjeBldfYD2NYqraXwzTpvCZRMM2sU3kqHIXNoTYhIQqIKyF7PzfGfTg9lsQkAFR_5SL-ngxVFSisx1k6D4OVVjM0Fe3kdkaBgA-Uw0OyX5NMWmverUjspMvjsnBxr6B1l_zCRlCiNAnWDLmxXee0d7723JVlLM5XTo6KPxpFwr0kD7PsCF3XdIJsEVaLKimo7oNkT6g3vUpeR30X-6HrDZWYBYJHoukcSIzwkkXA46ZToQJpI01NliFYR4AXNpyp1MnsCbE07paJtwl3AC9i8Iz0losF_k5oWieLmIbpN64xAQa5W1wwpzTwGV4m3Q2oKiPSj9DYd2BMCqEEXvMhEIYFVex4qJN7hC77d2of-0HICpUHRXqr6i4-I-HXJI9P73diAXpFWmVq8_8muzar7JYr258wMF19NP_BQASzfU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Optimized+Algorithm+of+Finding+the+Shortest+Path+in+a+Multiple+Graph&rft.jtitle=Modelirovanie+i+analiz+informacionnyh+sistem&rft.au=Alexander+Valeryevich+Smirnov&rft.date=2023-04-28&rft.pub=Yaroslavl+State+University&rft.issn=1818-1015&rft.eissn=2313-5417&rft.volume=30&rft.issue=1&rft.spage=6&rft.epage=15&rft_id=info:doi/10.18255%2F1818-1015-2023-1-6-15&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_56ebb6a1c1834b0fb64422aabbb7056b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1818-1015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1818-1015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1818-1015&client=summon