Research on Optimization of Distribution Network Connection Mode Based on Graph Neural Network and Genetic Algorithm

With the deep integration of electric power and information technology systems, the distribution system shows the trend of increasingly complex structures and increasing external risk factors. This leads to more diversified types of faults in the distribution network, so it is crucial to optimize it...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Distributed generation and alternative energy journal s. 1179 - 1208
Hlavní autori: Chen, Guo, Hui, Wang, Huan, Yan, Bingchen, Li, Xingxing, Zhou
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 19.02.2025
ISSN:2156-3306, 2156-6550
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the deep integration of electric power and information technology systems, the distribution system shows the trend of increasingly complex structures and increasing external risk factors. This leads to more diversified types of faults in the distribution network, so it is crucial to optimize its topology. In this paper, we first compare the main connection modes of high-voltage and medium-voltage distribution networks in China, and combine them with the specific needs of Shaanxi Power Grid to propose a differentiated flexible network model and its scope of application. Using Graph Neural Network and Genetic Algorithm, an innovative optimization method of distribution network connection is proposed to support the typical network structure of the new distribution network. Analysis of examples shows that the proposed algorithm can improve the original network’s network loss and voltage deviation by 32.8% and 37.3%, respectively, and the improvement effect is better than that of the traditional genetic algorithm. At the same time, considering the different stages of distribution network development and the uncertainties that may be faced, this paper also explores the flexible transition scheme of each typical network structure to ensure a smooth transition to a more efficient, green and intelligent distribution network model without affecting the reliability of the existing power supply.
AbstractList With the deep integration of electric power and information technology systems, the distribution system shows the trend of increasingly complex structures and increasing external risk factors. This leads to more diversified types of faults in the distribution network, so it is crucial to optimize its topology. In this paper, we first compare the main connection modes of high-voltage and medium-voltage distribution networks in China, and combine them with the specific needs of Shaanxi Power Grid to propose a differentiated flexible network model and its scope of application. Using Graph Neural Network and Genetic Algorithm, an innovative optimization method of distribution network connection is proposed to support the typical network structure of the new distribution network. Analysis of examples shows that the proposed algorithm can improve the original network’s network loss and voltage deviation by 32.8% and 37.3%, respectively, and the improvement effect is better than that of the traditional genetic algorithm. At the same time, considering the different stages of distribution network development and the uncertainties that may be faced, this paper also explores the flexible transition scheme of each typical network structure to ensure a smooth transition to a more efficient, green and intelligent distribution network model without affecting the reliability of the existing power supply.
Author Hui, Wang
Xingxing, Zhou
Chen, Guo
Bingchen, Li
Huan, Yan
Author_xml – sequence: 1
  givenname: Guo
  surname: Chen
  fullname: Chen, Guo
– sequence: 2
  givenname: Wang
  surname: Hui
  fullname: Hui, Wang
– sequence: 3
  givenname: Yan
  surname: Huan
  fullname: Huan, Yan
– sequence: 4
  givenname: Li
  surname: Bingchen
  fullname: Bingchen, Li
– sequence: 5
  givenname: Zhou
  surname: Xingxing
  fullname: Xingxing, Zhou
BookMark eNo9kMFOwzAMhiM0JMbYG3DIC3QkTdq0xzFgIA0mIThXbupsGVszJZkQPD1rmeaL_f_-7cN3TQata5GQW84mXLAsvWtWgJuUZ3kiBMsnoszlBRn2Rp5lbHCau-UVGYewYccSZZlzNSTxHQOC12vqWrrcR7uzvxDtUThDH2yI3taHXr9h_Hb-i85c26LurVfXIL2HgE13PfewXx9jBw_bcxrahs6xxWg1nW5Xztu43t2QSwPbgONTH5HPp8eP2XOyWM5fZtNFonnOZWI08MIUkhUsVaJAVXBI61zXXCPWDFJuFEKjUlVKkA1TjaxFmhklMykNghgR-f9XexeCR1Ptvd2B_6k4q3p41Rle1fGpOnjiD5KQZv4
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.13052/dgaej2156-3306.3964
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2156-6550
EndPage 1208
ExternalDocumentID 10_13052_dgaej2156_3306_3964
GroupedDBID .7F
.QJ
4.4
5VS
AAKQS
AAYXX
ABCCY
ABFIM
ABPEM
ACIWK
ACTIO
ADCVX
ADDNK
AFRAH
AGMYJ
AIJEM
ALMA_UNASSIGNED_HOLDINGS
AQRUH
AVBZW
BLEHA
CCCUG
CE4
CITATION
DKSSO
E~A
E~B
HF~
HZ~
J.P
KYCEM
MET
O9-
S-T
TFL
TFW
UT5
UU3
~S~
ID FETCH-LOGICAL-c1614-fca18f840802738e781a2b6cb1ceeb0a21f7ead72794a4d07d4b325f74544fea3
ISSN 2156-3306
IngestDate Sat Nov 29 08:09:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1614-fca18f840802738e781a2b6cb1ceeb0a21f7ead72794a4d07d4b325f74544fea3
OpenAccessLink https://journals.riverpublishers.com/index.php/DGAEJ/article/download/27193/21345
PageCount 30
ParticipantIDs crossref_primary_10_13052_dgaej2156_3306_3964
PublicationCentury 2000
PublicationDate 2025-02-19
PublicationDateYYYYMMDD 2025-02-19
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-19
  day: 19
PublicationDecade 2020
PublicationTitle Distributed generation and alternative energy journal
PublicationYear 2025
SSID ssj0000399617
Score 2.3133717
Snippet With the deep integration of electric power and information technology systems, the distribution system shows the trend of increasingly complex structures and...
SourceID crossref
SourceType Index Database
StartPage 1179
Title Research on Optimization of Distribution Network Connection Mode Based on Graph Neural Network and Genetic Algorithm
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 2156-6550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399617
  issn: 2156-3306
  databaseCode: TFW
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWwgEOqHwJCkU-cFsFktiJk2MLbTlUhcOillPkxPayqE2qJa36y_r7mLGdxAWE6IFLtLLGk92dp5mxPfNMyBuWxpolJo8E42XEdS2iOimaKElVzow2KlaWZ_ZQHB0VJyfl59nseuiFuTwVbVtcXZXn_9XUMAbGxtbZW5h7VAoD8BmMDk8wOzz_yfBDLR0eA3wCh3DmOy0xLfyANLn-hivs9cWqrLmtdXE3huPNaPNdCGwKZx8gmfUc6TvAjoM0brQjVzUSve6cLrv1qv92Fqa44ztAydKSWvdDybM9mm8d1bh2TYfhT7JVBs4NHlx0E-BswcGx9DHWDrlt268TtHchBDd-8uEq3MtIbW-495jW5UH-kUeMxZ4cexrLM0dP690s8tgFITtJLTfE7-EAnBnyy6ql1N9H3W9Z6YjTb7Jv_xIVx1pFd-SXpdWopUItFWq5Q-6mIisxICz2j8e9vRiyvtxe9jy-1HdtoqJ3f_g6QVYUpDeLTfLQr0vojsPTIzLT7WPyIGCrfEL6AVm0a2mILNoZGiKLeqzQCVkUkUUtsnC2RRZ1yBqlASHUI4uOyHpKvuzvLd5_jPylHVEDiwcemUYmhSk49nALVmhRJDKt86ZOIB2rY5kmRoD3grS55JKrWCheszQzgmecGy3ZM7LRdq1-TmgNakqQzpiBdUVRShAUcaZUncjGMPWCRMOfVp07bpbqb9bauqX8S3J_AukrstGvL_Q2uddc9qsf69fW5D8BBkOKzg
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Optimization+of+Distribution+Network+Connection+Mode+Based+on+Graph+Neural+Network+and+Genetic+Algorithm&rft.jtitle=Distributed+generation+and+alternative+energy+journal&rft.au=Chen%2C+Guo&rft.au=Hui%2C+Wang&rft.au=Huan%2C+Yan&rft.au=Bingchen%2C+Li&rft.date=2025-02-19&rft.issn=2156-3306&rft.eissn=2156-6550&rft.spage=1179&rft.epage=1208&rft_id=info:doi/10.13052%2Fdgaej2156-3306.3964&rft.externalDBID=n%2Fa&rft.externalDocID=10_13052_dgaej2156_3306_3964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-3306&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-3306&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-3306&client=summon