Random coding method for coherent detection φ-OTDR without optical amplifier
•Random coding method can bring SNR enhancement without loss of the sensing bandwidth.•The sensing distance can be extended without any light amplification.•System hardware is optimized and the cost is reduced. In this article, a coherent detection phase-sensitive optical time-domain reflectometry (...
Uložené v:
| Vydané v: | Optics and lasers in engineering Ročník 161; s. 107318 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.02.2023
|
| Predmet: | |
| ISSN: | 0143-8166, 1873-0302 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Random coding method can bring SNR enhancement without loss of the sensing bandwidth.•The sensing distance can be extended without any light amplification.•System hardware is optimized and the cost is reduced.
In this article, a coherent detection phase-sensitive optical time-domain reflectometry (φ-OTDR) without optical amplifier using random coding method is proposed. A series of pulses modulated by random codes are injected into the optical fiber to enhance the signal-to-noise ratio (SNR) and extend the sensing distance. The code only needs one sequence for decoding, which maintains the original sensing bandwidth. Simultaneously, the coding probe pulse does not pass through any optical amplifier to avoid the transient effect. Experimental results show that the SNR of the demodulated signal is improved 14.19 dB by using 128-bit random coding pulse. In the traditional single pulse scheme with erbium doped fiber amplifier (EDFA), the intensity SNR at 25.521 km is only 5.39 dB with a 40 ns pulse width, and the vibration signal cannot be effectively demodulated. In the proposed system with the same pulse width, the external disturbance can be located successfully at 42.338 km, and the SNR of the demodulated signal is 21.5 dB. |
|---|---|
| AbstractList | •Random coding method can bring SNR enhancement without loss of the sensing bandwidth.•The sensing distance can be extended without any light amplification.•System hardware is optimized and the cost is reduced.
In this article, a coherent detection phase-sensitive optical time-domain reflectometry (φ-OTDR) without optical amplifier using random coding method is proposed. A series of pulses modulated by random codes are injected into the optical fiber to enhance the signal-to-noise ratio (SNR) and extend the sensing distance. The code only needs one sequence for decoding, which maintains the original sensing bandwidth. Simultaneously, the coding probe pulse does not pass through any optical amplifier to avoid the transient effect. Experimental results show that the SNR of the demodulated signal is improved 14.19 dB by using 128-bit random coding pulse. In the traditional single pulse scheme with erbium doped fiber amplifier (EDFA), the intensity SNR at 25.521 km is only 5.39 dB with a 40 ns pulse width, and the vibration signal cannot be effectively demodulated. In the proposed system with the same pulse width, the external disturbance can be located successfully at 42.338 km, and the SNR of the demodulated signal is 21.5 dB. |
| ArticleNumber | 107318 |
| Author | Li, Peihong Wang, Yu Gao, Yan Liu, Xin Zhang, Hongjuan Bai, Qing Yin, Kang Jin, Baoquan |
| Author_xml | – sequence: 1 givenname: Peihong surname: Li fullname: Li, Peihong organization: Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China – sequence: 2 givenname: Yu surname: Wang fullname: Wang, Yu organization: Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China – sequence: 3 givenname: Kang surname: Yin fullname: Yin, Kang organization: Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China – sequence: 4 givenname: Xin surname: Liu fullname: Liu, Xin organization: Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China – sequence: 5 givenname: Qing surname: Bai fullname: Bai, Qing organization: Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China – sequence: 6 givenname: Hongjuan orcidid: 0000-0002-6627-0295 surname: Zhang fullname: Zhang, Hongjuan organization: College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China – sequence: 7 givenname: Yan surname: Gao fullname: Gao, Yan organization: College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China – sequence: 8 givenname: Baoquan surname: Jin fullname: Jin, Baoquan email: jinbaoquan@tyut.edu.cn organization: Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China |
| BookMark | eNqNkM1KAzEURoNUsK0-g3mBqclkJpNZuCj1FyqFUtchTe60KTNJyUTFF_D1fCVTKi7c6OrC5Z7v8p0RGjjvAKFLSiaUUH61m_h9bFUPbjPJSZ6nbcWoOEFDKiqWEUbyARoSWrBMUM7P0KjvdySRBaVD9LRUzvgOa2-s2-AO4tYb3PiQNlsI4CI2EEFH6x3-_MgWq5slfrPp6iXi9Nhq1WLV7VvbWAjn6LRRbQ8X33OMnu9uV7OHbL64f5xN55mmnIiMmYopXpdQc7amrFGgK1OVTJeGQ1lSsTYkrwQxdc2a1ElwbgqqCi50zUsGbIyqY64Ovu8DNHIfbKfCu6REHqzInfyxIg9W5NFKIq9_kdpGdWgXg7LtP_jpkYdU7zVVlr224DQYG5Ilabz9M-MLuxaGkQ |
| CitedBy_id | crossref_primary_10_1088_1361_6501_adfaff crossref_primary_10_1109_JLT_2023_3301910 crossref_primary_10_1007_s11432_024_4315_2 crossref_primary_10_1109_JLT_2025_3557188 crossref_primary_10_1016_j_optlastec_2023_109770 crossref_primary_10_1109_JPHOT_2024_3399055 crossref_primary_10_1109_JSEN_2024_3407752 crossref_primary_10_1016_j_optlastec_2024_111721 crossref_primary_10_1016_j_optlaseng_2025_109025 crossref_primary_10_3788_COL202523_090603 |
| Cites_doi | 10.1109/JLT.2021.3123108 10.3390/s16050748 10.1364/OE.408757 10.1109/JLT.2020.3003440 10.1109/LPT.2019.2921608 10.1016/j.optlaseng.2020.106483 10.3390/s20072000 10.1364/AO.55.007810 10.1364/OL.42.000391 10.1109/JIOT.2018.2869474 10.1063/1.5139602 10.1364/OE.24.022303 10.1109/JLT.2019.2913284 10.1109/JLT.2019.2901276 10.1109/JPHOT.2015.2499539 10.3390/e22101134 10.7567/1882-0786/ab6133 10.1364/OL.44.005969 10.1109/LPT.2015.2455525 10.1109/JLT.2015.2449085 10.1109/JSEN.2021.3098805 10.1080/10739149.2020.1780253 10.1364/OE.25.003504 10.1088/1054-660X/24/11/115106 10.1109/JPHOT.2015.2508427 10.1109/JLT.2017.2661680 10.1364/OE.26.016138 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optlaseng.2022.107318 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-0302 |
| ExternalDocumentID | 10_1016_j_optlaseng_2022_107318 S0143816622003712 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K VOH WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c1608-3d73a695e963b13faec7d753c5d6e5518bd02780d993f202866d41a468c9653e3 |
| ISSN | 0143-8166 |
| IngestDate | Tue Nov 18 21:39:46 EST 2025 Sat Nov 29 07:26:36 EST 2025 Fri Feb 23 02:39:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Random coding pulse Phase-sensitive optical time domain reflectometry Pulse coding Distributed optical fiber vibration sensor |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1608-3d73a695e963b13faec7d753c5d6e5518bd02780d993f202866d41a468c9653e3 |
| ORCID | 0000-0002-6627-0295 |
| ParticipantIDs | crossref_primary_10_1016_j_optlaseng_2022_107318 crossref_citationtrail_10_1016_j_optlaseng_2022_107318 elsevier_sciencedirect_doi_10_1016_j_optlaseng_2022_107318 |
| PublicationCentury | 2000 |
| PublicationDate | February 2023 2023-02-00 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Optics and lasers in engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lu, Pan, Wang (bib0010) 2017; 42 He, Zhu, Zhou (bib0006) 2015; 27 Wang, Zhu, Cao (bib0029) 2017; 25 Li, Wang, Wang (bib0027) 2021; 21 Fernández-Ruiz, Soto, Williams (bib0012) 2020; 5 Barrias, Casas, Villalba (bib0002) 2016; 16 Dong, Chen, Liu (bib0021) 2016; 55 Wang, Zhang, Xiong (bib0017) 2019; 6 Li, Zeng, Zhou (bib0013) 2021; 49 Chen, Qi, He (bib0011) 2018; 26 Muanenda, Oton, Faralli (bib0016) 2016; 8 Zhang, Fan, He (bib0004) 2019; 37 Wu, Wang, Xiong (bib0018) 2020; 38 Chen, Liu, He (bib0030) 2019; 37 Ma, Jiang, Wang (bib0015) 2020; 13 Wu, Gan, Li (bib0024) 2015; 7 Liokumovich, Ushakov, Kotov (bib0025) 2015; 33 Martins, Shi, Thomsen (bib0009) 2016; 24 Alekseev, Vdovenko, Gorshkov (bib0019) 2014; 24 Wang, Li, Xiao (bib0023) 2022; 40 Wu, Fan, Liu (bib0005) 2019; 44 Yuan, Wang, Zhao (bib0001) 2021; 139 Westbrook, Kremp, Feder (bib0003) 2017; 35 Wang, Jiang, Wang (bib0007) 2020; 28 Wang, Zou, Xu (bib0022) 2020; 20 Zhong, Wang, Zong (bib0026) 2019; 31 Li, Zhang, Sang (bib0028) 2020; 22 Lu, Zhu, Chen (bib0008) 2010; 28 Shiloh, Levanon, Eyal (bib0020) 2018 Wang, Liu, Chen (bib0014) 2019; 11 Chen (10.1016/j.optlaseng.2022.107318_bib0030) 2019; 37 Wang (10.1016/j.optlaseng.2022.107318_bib0029) 2017; 25 Wang (10.1016/j.optlaseng.2022.107318_bib0014) 2019; 11 Fernández-Ruiz (10.1016/j.optlaseng.2022.107318_bib0012) 2020; 5 Lu (10.1016/j.optlaseng.2022.107318_bib0010) 2017; 42 Wang (10.1016/j.optlaseng.2022.107318_bib0007) 2020; 28 Chen (10.1016/j.optlaseng.2022.107318_bib0011) 2018; 26 Martins (10.1016/j.optlaseng.2022.107318_bib0009) 2016; 24 Li (10.1016/j.optlaseng.2022.107318_bib0027) 2021; 21 Ma (10.1016/j.optlaseng.2022.107318_bib0015) 2020; 13 Wang (10.1016/j.optlaseng.2022.107318_bib0017) 2019; 6 Westbrook (10.1016/j.optlaseng.2022.107318_bib0003) 2017; 35 Muanenda (10.1016/j.optlaseng.2022.107318_bib0016) 2016; 8 Shiloh (10.1016/j.optlaseng.2022.107318_bib0020) 2018 Wu (10.1016/j.optlaseng.2022.107318_bib0018) 2020; 38 Zhang (10.1016/j.optlaseng.2022.107318_bib0004) 2019; 37 Yuan (10.1016/j.optlaseng.2022.107318_bib0001) 2021; 139 Dong (10.1016/j.optlaseng.2022.107318_bib0021) 2016; 55 Lu (10.1016/j.optlaseng.2022.107318_bib0008) 2010; 28 Zhong (10.1016/j.optlaseng.2022.107318_bib0026) 2019; 31 Barrias (10.1016/j.optlaseng.2022.107318_bib0002) 2016; 16 Wu (10.1016/j.optlaseng.2022.107318_bib0005) 2019; 44 Alekseev (10.1016/j.optlaseng.2022.107318_bib0019) 2014; 24 Li (10.1016/j.optlaseng.2022.107318_bib0013) 2021; 49 Wang (10.1016/j.optlaseng.2022.107318_bib0022) 2020; 20 Wang (10.1016/j.optlaseng.2022.107318_bib0023) 2022; 40 Wu (10.1016/j.optlaseng.2022.107318_bib0024) 2015; 7 He (10.1016/j.optlaseng.2022.107318_bib0006) 2015; 27 Li (10.1016/j.optlaseng.2022.107318_bib0028) 2020; 22 Liokumovich (10.1016/j.optlaseng.2022.107318_bib0025) 2015; 33 |
| References_xml | – volume: 21 start-page: 22371 year: 2021 end-page: 22387 ident: bib0027 article-title: Pulse coding in distributed optical fiber vibration sensor: a review publication-title: IEEE Sens J – volume: 49 start-page: 65 year: 2021 end-page: 80 ident: bib0013 article-title: Vibration monitoring for the West-East gas pipeline project of China by phase optical time domain reflectometry (phase-OTDR) publication-title: Instrum Sci Technol – volume: 11 start-page: 1 year: 2019 end-page: 8 ident: bib0014 article-title: Distributed fiber-optic dynamic-strain sensor with sub-meter spatial resolution and single-shot measurement publication-title: IEEE Photonics J – volume: 31 start-page: 1191 year: 2019 end-page: 1194 ident: bib0026 article-title: Dynamic measurement based on the linear characteristic of phase change in Phi-OTDR publication-title: IEEE Photonics Technol Lett – volume: 16 start-page: 748 year: 2016 ident: bib0002 article-title: A review of distributed optical fiber sensors for civil engineering applications publication-title: Sensors – volume: 26 start-page: 16138 year: 2018 end-page: 16146 ident: bib0011 article-title: High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution publication-title: Opt Express – volume: 5 year: 2020 ident: bib0012 article-title: Distributed acoustic sensing for seismic activity monitoring publication-title: APL Photonics – volume: 42 start-page: 391 year: 2017 end-page: 394 ident: bib0010 article-title: High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse publication-title: Opt Lett – volume: 20 start-page: 2000 year: 2020 ident: bib0022 article-title: Optical fiber vibration sensor using least mean square error algorithm publication-title: Sensors – volume: 139 year: 2021 ident: bib0001 article-title: An anti-noise composite optical fiber vibration sensing system publication-title: Opt Lasers Eng – volume: 6 start-page: 6117 year: 2019 end-page: 6124 ident: bib0017 article-title: Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR publication-title: IEEE Internet Things J – volume: 7 start-page: 1 year: 2015 end-page: 10 ident: bib0024 article-title: Distributed fiber voice sensor based on phase-sensitive optical time-domain reflectometry publication-title: IEEE Photonics J – volume: 40 start-page: 872 year: 2022 end-page: 879 ident: bib0023 article-title: Interference fading suppression using active frequency transformation method with auxiliary interferometer feedback publication-title: J Lightwave Technol – volume: 38 start-page: 6121 year: 2020 end-page: 6128 ident: bib0018 article-title: Bipolar-coding φ-OTDR with interference fading elimination and frequency drift compensation publication-title: J Lightwave Technol – volume: 24 year: 2014 ident: bib0019 article-title: A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal publication-title: Laser Phys – volume: 37 start-page: 4590 year: 2019 end-page: 4596 ident: bib0004 article-title: Long-range distributed static strain sensing with <100 nano-strain resolution realized using OFDR publication-title: J Lightwave Technol – volume: 55 start-page: 7810 year: 2016 end-page: 7815 ident: bib0021 article-title: Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer publication-title: Appl Opt – volume: 33 start-page: 3660 year: 2015 end-page: 3671 ident: bib0025 article-title: Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions publication-title: J Lightwave Technol – volume: 24 start-page: 22303 year: 2016 end-page: 22318 ident: bib0009 article-title: Real time dynamic strain monitoring of optical links using the back reflection of live PSK data publication-title: Opt Express – volume: 28 start-page: 3243 year: 2010 end-page: 3249 ident: bib0008 article-title: Distributed vibration sensor based on coherent detection of phase-OTDR publication-title: J Lightwave Technol – volume: 13 year: 2020 ident: bib0015 article-title: High performance distributed acoustic sensor based on digital LFM pulse coherent-optical time domain reflectometer for intrapulse event publication-title: Appl Phys Express – volume: 44 start-page: 5969 year: 2019 end-page: 5972 ident: bib0005 article-title: Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation publication-title: Opt Lett – volume: 35 start-page: 1248 year: 2017 end-page: 1252 ident: bib0003 article-title: Continuous multicore optical fiber grating arrays for distributed sensing applications publication-title: J Lightwave Technol – volume: 8 start-page: 1 year: 2016 end-page: 10 ident: bib0016 article-title: A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR publication-title: IEEE Photonics J – volume: 25 start-page: 3504 year: 2017 end-page: 3513 ident: bib0029 article-title: Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding publication-title: Opt Express – start-page: TuE25 year: 2018 ident: bib0020 article-title: Highly-sensitive distributed dynamic strain sensing via perfect periodic coherent codes publication-title: Proceedings of the 26th international conference on optical fiber sensors – volume: 37 start-page: 4462 year: 2019 end-page: 4468 ident: bib0030 article-title: 108-km distributed acoustic sensor with 220-pε/√Hz strain resolution and 5-m spatial resolution publication-title: J Lightwave Technol – volume: 27 start-page: 2158 year: 2015 end-page: 2161 ident: bib0006 article-title: Frequency response enhancement by periodical nonuniform sampling in distributed sensing publication-title: IEEE Photonics Technol Lett – volume: 28 start-page: 38465 year: 2020 end-page: 38479 ident: bib0007 article-title: Quasi-distributed acoustic sensing with interleaved identical chirped pulses for multiplying the measurement slew-rate publication-title: Opt Express – volume: 22 start-page: 1134 year: 2020 ident: bib0028 article-title: Deep learning-based security verification for a random number generator using white chaos publication-title: Entropy – volume: 40 start-page: 872 issue: 3 year: 2022 ident: 10.1016/j.optlaseng.2022.107318_bib0023 article-title: Interference fading suppression using active frequency transformation method with auxiliary interferometer feedback publication-title: J Lightwave Technol doi: 10.1109/JLT.2021.3123108 – volume: 11 start-page: 1 issue: 6 year: 2019 ident: 10.1016/j.optlaseng.2022.107318_bib0014 article-title: Distributed fiber-optic dynamic-strain sensor with sub-meter spatial resolution and single-shot measurement publication-title: IEEE Photonics J – volume: 16 start-page: 748 issue: 5 year: 2016 ident: 10.1016/j.optlaseng.2022.107318_bib0002 article-title: A review of distributed optical fiber sensors for civil engineering applications publication-title: Sensors doi: 10.3390/s16050748 – volume: 28 start-page: 3243 issue: 22 year: 2010 ident: 10.1016/j.optlaseng.2022.107318_bib0008 article-title: Distributed vibration sensor based on coherent detection of phase-OTDR publication-title: J Lightwave Technol – volume: 28 start-page: 38465 issue: 26 year: 2020 ident: 10.1016/j.optlaseng.2022.107318_bib0007 article-title: Quasi-distributed acoustic sensing with interleaved identical chirped pulses for multiplying the measurement slew-rate publication-title: Opt Express doi: 10.1364/OE.408757 – volume: 38 start-page: 6121 issue: 21 year: 2020 ident: 10.1016/j.optlaseng.2022.107318_bib0018 article-title: Bipolar-coding φ-OTDR with interference fading elimination and frequency drift compensation publication-title: J Lightwave Technol doi: 10.1109/JLT.2020.3003440 – volume: 31 start-page: 1191 issue: 14 year: 2019 ident: 10.1016/j.optlaseng.2022.107318_bib0026 article-title: Dynamic measurement based on the linear characteristic of phase change in Phi-OTDR publication-title: IEEE Photonics Technol Lett doi: 10.1109/LPT.2019.2921608 – start-page: TuE25 year: 2018 ident: 10.1016/j.optlaseng.2022.107318_bib0020 article-title: Highly-sensitive distributed dynamic strain sensing via perfect periodic coherent codes – volume: 139 year: 2021 ident: 10.1016/j.optlaseng.2022.107318_bib0001 article-title: An anti-noise composite optical fiber vibration sensing system publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2020.106483 – volume: 20 start-page: 2000 issue: 7 year: 2020 ident: 10.1016/j.optlaseng.2022.107318_bib0022 article-title: Optical fiber vibration sensor using least mean square error algorithm publication-title: Sensors doi: 10.3390/s20072000 – volume: 55 start-page: 7810 issue: 28 year: 2016 ident: 10.1016/j.optlaseng.2022.107318_bib0021 article-title: Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer publication-title: Appl Opt doi: 10.1364/AO.55.007810 – volume: 42 start-page: 391 issue: 3 year: 2017 ident: 10.1016/j.optlaseng.2022.107318_bib0010 article-title: High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse publication-title: Opt Lett doi: 10.1364/OL.42.000391 – volume: 6 start-page: 6117 issue: 4 year: 2019 ident: 10.1016/j.optlaseng.2022.107318_bib0017 article-title: Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2869474 – volume: 5 issue: 3 year: 2020 ident: 10.1016/j.optlaseng.2022.107318_bib0012 article-title: Distributed acoustic sensing for seismic activity monitoring publication-title: APL Photonics doi: 10.1063/1.5139602 – volume: 24 start-page: 22303 issue: 19 year: 2016 ident: 10.1016/j.optlaseng.2022.107318_bib0009 article-title: Real time dynamic strain monitoring of optical links using the back reflection of live PSK data publication-title: Opt Express doi: 10.1364/OE.24.022303 – volume: 37 start-page: 4590 issue: 18 year: 2019 ident: 10.1016/j.optlaseng.2022.107318_bib0004 article-title: Long-range distributed static strain sensing with <100 nano-strain resolution realized using OFDR publication-title: J Lightwave Technol doi: 10.1109/JLT.2019.2913284 – volume: 37 start-page: 4462 issue: 18 year: 2019 ident: 10.1016/j.optlaseng.2022.107318_bib0030 article-title: 108-km distributed acoustic sensor with 220-pε/√Hz strain resolution and 5-m spatial resolution publication-title: J Lightwave Technol doi: 10.1109/JLT.2019.2901276 – volume: 7 start-page: 1 issue: 6 year: 2015 ident: 10.1016/j.optlaseng.2022.107318_bib0024 article-title: Distributed fiber voice sensor based on phase-sensitive optical time-domain reflectometry publication-title: IEEE Photonics J doi: 10.1109/JPHOT.2015.2499539 – volume: 22 start-page: 1134 issue: 10 year: 2020 ident: 10.1016/j.optlaseng.2022.107318_bib0028 article-title: Deep learning-based security verification for a random number generator using white chaos publication-title: Entropy doi: 10.3390/e22101134 – volume: 13 issue: 1 year: 2020 ident: 10.1016/j.optlaseng.2022.107318_bib0015 article-title: High performance distributed acoustic sensor based on digital LFM pulse coherent-optical time domain reflectometer for intrapulse event publication-title: Appl Phys Express doi: 10.7567/1882-0786/ab6133 – volume: 44 start-page: 5969 issue: 24 year: 2019 ident: 10.1016/j.optlaseng.2022.107318_bib0005 article-title: Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation publication-title: Opt Lett doi: 10.1364/OL.44.005969 – volume: 27 start-page: 2158 issue: 20 year: 2015 ident: 10.1016/j.optlaseng.2022.107318_bib0006 article-title: Frequency response enhancement by periodical nonuniform sampling in distributed sensing publication-title: IEEE Photonics Technol Lett doi: 10.1109/LPT.2015.2455525 – volume: 33 start-page: 3660 issue: 17 year: 2015 ident: 10.1016/j.optlaseng.2022.107318_bib0025 article-title: Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions publication-title: J Lightwave Technol doi: 10.1109/JLT.2015.2449085 – volume: 21 start-page: 22371 issue: 20 year: 2021 ident: 10.1016/j.optlaseng.2022.107318_bib0027 article-title: Pulse coding in distributed optical fiber vibration sensor: a review publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3098805 – volume: 49 start-page: 65 issue: 1 year: 2021 ident: 10.1016/j.optlaseng.2022.107318_bib0013 article-title: Vibration monitoring for the West-East gas pipeline project of China by phase optical time domain reflectometry (phase-OTDR) publication-title: Instrum Sci Technol doi: 10.1080/10739149.2020.1780253 – volume: 25 start-page: 3504 issue: 4 year: 2017 ident: 10.1016/j.optlaseng.2022.107318_bib0029 article-title: Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding publication-title: Opt Express doi: 10.1364/OE.25.003504 – volume: 24 issue: 11 year: 2014 ident: 10.1016/j.optlaseng.2022.107318_bib0019 article-title: A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal publication-title: Laser Phys doi: 10.1088/1054-660X/24/11/115106 – volume: 8 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.optlaseng.2022.107318_bib0016 article-title: A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR publication-title: IEEE Photonics J doi: 10.1109/JPHOT.2015.2508427 – volume: 35 start-page: 1248 issue: 6 year: 2017 ident: 10.1016/j.optlaseng.2022.107318_bib0003 article-title: Continuous multicore optical fiber grating arrays for distributed sensing applications publication-title: J Lightwave Technol doi: 10.1109/JLT.2017.2661680 – volume: 26 start-page: 16138 issue: 13 year: 2018 ident: 10.1016/j.optlaseng.2022.107318_bib0011 article-title: High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution publication-title: Opt Express doi: 10.1364/OE.26.016138 |
| SSID | ssj0016411 |
| Score | 2.3394015 |
| Snippet | •Random coding method can bring SNR enhancement without loss of the sensing bandwidth.•The sensing distance can be extended without any light... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107318 |
| SubjectTerms | Distributed optical fiber vibration sensor Phase-sensitive optical time domain reflectometry Pulse coding Random coding pulse |
| Title | Random coding method for coherent detection φ-OTDR without optical amplifier |
| URI | https://dx.doi.org/10.1016/j.optlaseng.2022.107318 |
| Volume | 161 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-0302 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016411 issn: 0143-8166 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBaj3WB7KFu30duGHtan4WFbsSz3rfTCrm0p2ZY9GUWS15TWDk1S-gv69_qXeqQjKwkrdGM0DyYIThLrfDk-Ovr0HULeJawvVCWyqBB9eySHq0joPIlSaWIlIH9Vbvf8x9f84ED0esWRJ2SOXDuBvK7F1VUxfFBXwxg42x6d_Qd3hw-FAXgPTocruB2uf-X4Y1nr5vy9atxxFewQ7ciEqjkxTotJm7HBDuGbO_ubgkeH3d1jV5G1JOVmiOVtabnm1cCzd33-ejgMss6QdtvDv1ZyZKppGPg9AyT_Dk6a6eBPX5v-NQmxBhUMvshZy4kd6nlFcF-QSFnLYW6rZO1JmSktCQuXLLJ7lPjcwWArcjBm8Xw0Rm32PyI7FhlOP8Ak2Purf8PaPk1hPGc-gM_LZlvWmtsUTVMnSwiP6cU0zwoI3ovbn_Z6n8NeE-8k2LXS_8I5FuCdX3d3DjOTl3SfkyW_oKDbCIQX5JGpl8mzGZnJZfLE0XzV6CX5huCgCA6K4KAADtqCgwZw0JtrBwzqgUE9MGgAxivyfX-vu_Mx8g01IpVwWwfXOZO8yAxE3X7CKmlUrmG9qjLNjZXm62u7ER1rSForuF_Bue4kssOFKnjGDHtNFuqmNiuExrJKZKyYjCGgw6xKyBx5lakKXkVWiVXC2ykqlVebt01PzsqWVnhahrkt7dyWOLerJA6GQxRcud9kq_VB6fNGzAdLAM99xmv_Y7xOnk7_ARtkYXwxMW_IY3U5Howu3nqg3QL5AZVY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+coding+method+for+coherent+detection+%CF%86-OTDR+without+optical+amplifier&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Li%2C+Peihong&rft.au=Wang%2C+Yu&rft.au=Yin%2C+Kang&rft.au=Liu%2C+Xin&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=161&rft_id=info:doi/10.1016%2Fj.optlaseng.2022.107318&rft.externalDocID=S0143816622003712 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon |