Random coding method for coherent detection φ-OTDR without optical amplifier

•Random coding method can bring SNR enhancement without loss of the sensing bandwidth.•The sensing distance can be extended without any light amplification.•System hardware is optimized and the cost is reduced. In this article, a coherent detection phase-sensitive optical time-domain reflectometry (...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optics and lasers in engineering Ročník 161; s. 107318
Hlavní autori: Li, Peihong, Wang, Yu, Yin, Kang, Liu, Xin, Bai, Qing, Zhang, Hongjuan, Gao, Yan, Jin, Baoquan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.02.2023
Predmet:
ISSN:0143-8166, 1873-0302
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Random coding method can bring SNR enhancement without loss of the sensing bandwidth.•The sensing distance can be extended without any light amplification.•System hardware is optimized and the cost is reduced. In this article, a coherent detection phase-sensitive optical time-domain reflectometry (φ-OTDR) without optical amplifier using random coding method is proposed. A series of pulses modulated by random codes are injected into the optical fiber to enhance the signal-to-noise ratio (SNR) and extend the sensing distance. The code only needs one sequence for decoding, which maintains the original sensing bandwidth. Simultaneously, the coding probe pulse does not pass through any optical amplifier to avoid the transient effect. Experimental results show that the SNR of the demodulated signal is improved 14.19 dB by using 128-bit random coding pulse. In the traditional single pulse scheme with erbium doped fiber amplifier (EDFA), the intensity SNR at 25.521 km is only 5.39 dB with a 40 ns pulse width, and the vibration signal cannot be effectively demodulated. In the proposed system with the same pulse width, the external disturbance can be located successfully at 42.338 km, and the SNR of the demodulated signal is 21.5 dB.
AbstractList •Random coding method can bring SNR enhancement without loss of the sensing bandwidth.•The sensing distance can be extended without any light amplification.•System hardware is optimized and the cost is reduced. In this article, a coherent detection phase-sensitive optical time-domain reflectometry (φ-OTDR) without optical amplifier using random coding method is proposed. A series of pulses modulated by random codes are injected into the optical fiber to enhance the signal-to-noise ratio (SNR) and extend the sensing distance. The code only needs one sequence for decoding, which maintains the original sensing bandwidth. Simultaneously, the coding probe pulse does not pass through any optical amplifier to avoid the transient effect. Experimental results show that the SNR of the demodulated signal is improved 14.19 dB by using 128-bit random coding pulse. In the traditional single pulse scheme with erbium doped fiber amplifier (EDFA), the intensity SNR at 25.521 km is only 5.39 dB with a 40 ns pulse width, and the vibration signal cannot be effectively demodulated. In the proposed system with the same pulse width, the external disturbance can be located successfully at 42.338 km, and the SNR of the demodulated signal is 21.5 dB.
ArticleNumber 107318
Author Li, Peihong
Wang, Yu
Gao, Yan
Liu, Xin
Zhang, Hongjuan
Bai, Qing
Yin, Kang
Jin, Baoquan
Author_xml – sequence: 1
  givenname: Peihong
  surname: Li
  fullname: Li, Peihong
  organization: Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
– sequence: 2
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  organization: Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
– sequence: 3
  givenname: Kang
  surname: Yin
  fullname: Yin, Kang
  organization: Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
– sequence: 4
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
– sequence: 5
  givenname: Qing
  surname: Bai
  fullname: Bai, Qing
  organization: Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
– sequence: 6
  givenname: Hongjuan
  orcidid: 0000-0002-6627-0295
  surname: Zhang
  fullname: Zhang, Hongjuan
  organization: College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
– sequence: 7
  givenname: Yan
  surname: Gao
  fullname: Gao, Yan
  organization: College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
– sequence: 8
  givenname: Baoquan
  surname: Jin
  fullname: Jin, Baoquan
  email: jinbaoquan@tyut.edu.cn
  organization: Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
BookMark eNqNkM1KAzEURoNUsK0-g3mBqclkJpNZuCj1FyqFUtchTe60KTNJyUTFF_D1fCVTKi7c6OrC5Z7v8p0RGjjvAKFLSiaUUH61m_h9bFUPbjPJSZ6nbcWoOEFDKiqWEUbyARoSWrBMUM7P0KjvdySRBaVD9LRUzvgOa2-s2-AO4tYb3PiQNlsI4CI2EEFH6x3-_MgWq5slfrPp6iXi9Nhq1WLV7VvbWAjn6LRRbQ8X33OMnu9uV7OHbL64f5xN55mmnIiMmYopXpdQc7amrFGgK1OVTJeGQ1lSsTYkrwQxdc2a1ElwbgqqCi50zUsGbIyqY64Ovu8DNHIfbKfCu6REHqzInfyxIg9W5NFKIq9_kdpGdWgXg7LtP_jpkYdU7zVVlr224DQYG5Ilabz9M-MLuxaGkQ
CitedBy_id crossref_primary_10_1088_1361_6501_adfaff
crossref_primary_10_1109_JLT_2023_3301910
crossref_primary_10_1007_s11432_024_4315_2
crossref_primary_10_1109_JLT_2025_3557188
crossref_primary_10_1016_j_optlastec_2023_109770
crossref_primary_10_1109_JPHOT_2024_3399055
crossref_primary_10_1109_JSEN_2024_3407752
crossref_primary_10_1016_j_optlastec_2024_111721
crossref_primary_10_1016_j_optlaseng_2025_109025
crossref_primary_10_3788_COL202523_090603
Cites_doi 10.1109/JLT.2021.3123108
10.3390/s16050748
10.1364/OE.408757
10.1109/JLT.2020.3003440
10.1109/LPT.2019.2921608
10.1016/j.optlaseng.2020.106483
10.3390/s20072000
10.1364/AO.55.007810
10.1364/OL.42.000391
10.1109/JIOT.2018.2869474
10.1063/1.5139602
10.1364/OE.24.022303
10.1109/JLT.2019.2913284
10.1109/JLT.2019.2901276
10.1109/JPHOT.2015.2499539
10.3390/e22101134
10.7567/1882-0786/ab6133
10.1364/OL.44.005969
10.1109/LPT.2015.2455525
10.1109/JLT.2015.2449085
10.1109/JSEN.2021.3098805
10.1080/10739149.2020.1780253
10.1364/OE.25.003504
10.1088/1054-660X/24/11/115106
10.1109/JPHOT.2015.2508427
10.1109/JLT.2017.2661680
10.1364/OE.26.016138
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.optlaseng.2022.107318
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-0302
ExternalDocumentID 10_1016_j_optlaseng_2022_107318
S0143816622003712
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c1608-3d73a695e963b13faec7d753c5d6e5518bd02780d993f202866d41a468c9653e3
ISSN 0143-8166
IngestDate Tue Nov 18 21:39:46 EST 2025
Sat Nov 29 07:26:36 EST 2025
Fri Feb 23 02:39:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Random coding pulse
Phase-sensitive optical time domain reflectometry
Pulse coding
Distributed optical fiber vibration sensor
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1608-3d73a695e963b13faec7d753c5d6e5518bd02780d993f202866d41a468c9653e3
ORCID 0000-0002-6627-0295
ParticipantIDs crossref_primary_10_1016_j_optlaseng_2022_107318
crossref_citationtrail_10_1016_j_optlaseng_2022_107318
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2022_107318
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Optics and lasers in engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lu, Pan, Wang (bib0010) 2017; 42
He, Zhu, Zhou (bib0006) 2015; 27
Wang, Zhu, Cao (bib0029) 2017; 25
Li, Wang, Wang (bib0027) 2021; 21
Fernández-Ruiz, Soto, Williams (bib0012) 2020; 5
Barrias, Casas, Villalba (bib0002) 2016; 16
Dong, Chen, Liu (bib0021) 2016; 55
Wang, Zhang, Xiong (bib0017) 2019; 6
Li, Zeng, Zhou (bib0013) 2021; 49
Chen, Qi, He (bib0011) 2018; 26
Muanenda, Oton, Faralli (bib0016) 2016; 8
Zhang, Fan, He (bib0004) 2019; 37
Wu, Wang, Xiong (bib0018) 2020; 38
Chen, Liu, He (bib0030) 2019; 37
Ma, Jiang, Wang (bib0015) 2020; 13
Wu, Gan, Li (bib0024) 2015; 7
Liokumovich, Ushakov, Kotov (bib0025) 2015; 33
Martins, Shi, Thomsen (bib0009) 2016; 24
Alekseev, Vdovenko, Gorshkov (bib0019) 2014; 24
Wang, Li, Xiao (bib0023) 2022; 40
Wu, Fan, Liu (bib0005) 2019; 44
Yuan, Wang, Zhao (bib0001) 2021; 139
Westbrook, Kremp, Feder (bib0003) 2017; 35
Wang, Jiang, Wang (bib0007) 2020; 28
Wang, Zou, Xu (bib0022) 2020; 20
Zhong, Wang, Zong (bib0026) 2019; 31
Li, Zhang, Sang (bib0028) 2020; 22
Lu, Zhu, Chen (bib0008) 2010; 28
Shiloh, Levanon, Eyal (bib0020) 2018
Wang, Liu, Chen (bib0014) 2019; 11
Chen (10.1016/j.optlaseng.2022.107318_bib0030) 2019; 37
Wang (10.1016/j.optlaseng.2022.107318_bib0029) 2017; 25
Wang (10.1016/j.optlaseng.2022.107318_bib0014) 2019; 11
Fernández-Ruiz (10.1016/j.optlaseng.2022.107318_bib0012) 2020; 5
Lu (10.1016/j.optlaseng.2022.107318_bib0010) 2017; 42
Wang (10.1016/j.optlaseng.2022.107318_bib0007) 2020; 28
Chen (10.1016/j.optlaseng.2022.107318_bib0011) 2018; 26
Martins (10.1016/j.optlaseng.2022.107318_bib0009) 2016; 24
Li (10.1016/j.optlaseng.2022.107318_bib0027) 2021; 21
Ma (10.1016/j.optlaseng.2022.107318_bib0015) 2020; 13
Wang (10.1016/j.optlaseng.2022.107318_bib0017) 2019; 6
Westbrook (10.1016/j.optlaseng.2022.107318_bib0003) 2017; 35
Muanenda (10.1016/j.optlaseng.2022.107318_bib0016) 2016; 8
Shiloh (10.1016/j.optlaseng.2022.107318_bib0020) 2018
Wu (10.1016/j.optlaseng.2022.107318_bib0018) 2020; 38
Zhang (10.1016/j.optlaseng.2022.107318_bib0004) 2019; 37
Yuan (10.1016/j.optlaseng.2022.107318_bib0001) 2021; 139
Dong (10.1016/j.optlaseng.2022.107318_bib0021) 2016; 55
Lu (10.1016/j.optlaseng.2022.107318_bib0008) 2010; 28
Zhong (10.1016/j.optlaseng.2022.107318_bib0026) 2019; 31
Barrias (10.1016/j.optlaseng.2022.107318_bib0002) 2016; 16
Wu (10.1016/j.optlaseng.2022.107318_bib0005) 2019; 44
Alekseev (10.1016/j.optlaseng.2022.107318_bib0019) 2014; 24
Li (10.1016/j.optlaseng.2022.107318_bib0013) 2021; 49
Wang (10.1016/j.optlaseng.2022.107318_bib0022) 2020; 20
Wang (10.1016/j.optlaseng.2022.107318_bib0023) 2022; 40
Wu (10.1016/j.optlaseng.2022.107318_bib0024) 2015; 7
He (10.1016/j.optlaseng.2022.107318_bib0006) 2015; 27
Li (10.1016/j.optlaseng.2022.107318_bib0028) 2020; 22
Liokumovich (10.1016/j.optlaseng.2022.107318_bib0025) 2015; 33
References_xml – volume: 21
  start-page: 22371
  year: 2021
  end-page: 22387
  ident: bib0027
  article-title: Pulse coding in distributed optical fiber vibration sensor: a review
  publication-title: IEEE Sens J
– volume: 49
  start-page: 65
  year: 2021
  end-page: 80
  ident: bib0013
  article-title: Vibration monitoring for the West-East gas pipeline project of China by phase optical time domain reflectometry (phase-OTDR)
  publication-title: Instrum Sci Technol
– volume: 11
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib0014
  article-title: Distributed fiber-optic dynamic-strain sensor with sub-meter spatial resolution and single-shot measurement
  publication-title: IEEE Photonics J
– volume: 31
  start-page: 1191
  year: 2019
  end-page: 1194
  ident: bib0026
  article-title: Dynamic measurement based on the linear characteristic of phase change in Phi-OTDR
  publication-title: IEEE Photonics Technol Lett
– volume: 16
  start-page: 748
  year: 2016
  ident: bib0002
  article-title: A review of distributed optical fiber sensors for civil engineering applications
  publication-title: Sensors
– volume: 26
  start-page: 16138
  year: 2018
  end-page: 16146
  ident: bib0011
  article-title: High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution
  publication-title: Opt Express
– volume: 5
  year: 2020
  ident: bib0012
  article-title: Distributed acoustic sensing for seismic activity monitoring
  publication-title: APL Photonics
– volume: 42
  start-page: 391
  year: 2017
  end-page: 394
  ident: bib0010
  article-title: High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse
  publication-title: Opt Lett
– volume: 20
  start-page: 2000
  year: 2020
  ident: bib0022
  article-title: Optical fiber vibration sensor using least mean square error algorithm
  publication-title: Sensors
– volume: 139
  year: 2021
  ident: bib0001
  article-title: An anti-noise composite optical fiber vibration sensing system
  publication-title: Opt Lasers Eng
– volume: 6
  start-page: 6117
  year: 2019
  end-page: 6124
  ident: bib0017
  article-title: Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR
  publication-title: IEEE Internet Things J
– volume: 7
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib0024
  article-title: Distributed fiber voice sensor based on phase-sensitive optical time-domain reflectometry
  publication-title: IEEE Photonics J
– volume: 40
  start-page: 872
  year: 2022
  end-page: 879
  ident: bib0023
  article-title: Interference fading suppression using active frequency transformation method with auxiliary interferometer feedback
  publication-title: J Lightwave Technol
– volume: 38
  start-page: 6121
  year: 2020
  end-page: 6128
  ident: bib0018
  article-title: Bipolar-coding φ-OTDR with interference fading elimination and frequency drift compensation
  publication-title: J Lightwave Technol
– volume: 24
  year: 2014
  ident: bib0019
  article-title: A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal
  publication-title: Laser Phys
– volume: 37
  start-page: 4590
  year: 2019
  end-page: 4596
  ident: bib0004
  article-title: Long-range distributed static strain sensing with <100 nano-strain resolution realized using OFDR
  publication-title: J Lightwave Technol
– volume: 55
  start-page: 7810
  year: 2016
  end-page: 7815
  ident: bib0021
  article-title: Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer
  publication-title: Appl Opt
– volume: 33
  start-page: 3660
  year: 2015
  end-page: 3671
  ident: bib0025
  article-title: Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions
  publication-title: J Lightwave Technol
– volume: 24
  start-page: 22303
  year: 2016
  end-page: 22318
  ident: bib0009
  article-title: Real time dynamic strain monitoring of optical links using the back reflection of live PSK data
  publication-title: Opt Express
– volume: 28
  start-page: 3243
  year: 2010
  end-page: 3249
  ident: bib0008
  article-title: Distributed vibration sensor based on coherent detection of phase-OTDR
  publication-title: J Lightwave Technol
– volume: 13
  year: 2020
  ident: bib0015
  article-title: High performance distributed acoustic sensor based on digital LFM pulse coherent-optical time domain reflectometer for intrapulse event
  publication-title: Appl Phys Express
– volume: 44
  start-page: 5969
  year: 2019
  end-page: 5972
  ident: bib0005
  article-title: Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation
  publication-title: Opt Lett
– volume: 35
  start-page: 1248
  year: 2017
  end-page: 1252
  ident: bib0003
  article-title: Continuous multicore optical fiber grating arrays for distributed sensing applications
  publication-title: J Lightwave Technol
– volume: 8
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib0016
  article-title: A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR
  publication-title: IEEE Photonics J
– volume: 25
  start-page: 3504
  year: 2017
  end-page: 3513
  ident: bib0029
  article-title: Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding
  publication-title: Opt Express
– start-page: TuE25
  year: 2018
  ident: bib0020
  article-title: Highly-sensitive distributed dynamic strain sensing via perfect periodic coherent codes
  publication-title: Proceedings of the 26th international conference on optical fiber sensors
– volume: 37
  start-page: 4462
  year: 2019
  end-page: 4468
  ident: bib0030
  article-title: 108-km distributed acoustic sensor with 220-pε/√Hz strain resolution and 5-m spatial resolution
  publication-title: J Lightwave Technol
– volume: 27
  start-page: 2158
  year: 2015
  end-page: 2161
  ident: bib0006
  article-title: Frequency response enhancement by periodical nonuniform sampling in distributed sensing
  publication-title: IEEE Photonics Technol Lett
– volume: 28
  start-page: 38465
  year: 2020
  end-page: 38479
  ident: bib0007
  article-title: Quasi-distributed acoustic sensing with interleaved identical chirped pulses for multiplying the measurement slew-rate
  publication-title: Opt Express
– volume: 22
  start-page: 1134
  year: 2020
  ident: bib0028
  article-title: Deep learning-based security verification for a random number generator using white chaos
  publication-title: Entropy
– volume: 40
  start-page: 872
  issue: 3
  year: 2022
  ident: 10.1016/j.optlaseng.2022.107318_bib0023
  article-title: Interference fading suppression using active frequency transformation method with auxiliary interferometer feedback
  publication-title: J Lightwave Technol
  doi: 10.1109/JLT.2021.3123108
– volume: 11
  start-page: 1
  issue: 6
  year: 2019
  ident: 10.1016/j.optlaseng.2022.107318_bib0014
  article-title: Distributed fiber-optic dynamic-strain sensor with sub-meter spatial resolution and single-shot measurement
  publication-title: IEEE Photonics J
– volume: 16
  start-page: 748
  issue: 5
  year: 2016
  ident: 10.1016/j.optlaseng.2022.107318_bib0002
  article-title: A review of distributed optical fiber sensors for civil engineering applications
  publication-title: Sensors
  doi: 10.3390/s16050748
– volume: 28
  start-page: 3243
  issue: 22
  year: 2010
  ident: 10.1016/j.optlaseng.2022.107318_bib0008
  article-title: Distributed vibration sensor based on coherent detection of phase-OTDR
  publication-title: J Lightwave Technol
– volume: 28
  start-page: 38465
  issue: 26
  year: 2020
  ident: 10.1016/j.optlaseng.2022.107318_bib0007
  article-title: Quasi-distributed acoustic sensing with interleaved identical chirped pulses for multiplying the measurement slew-rate
  publication-title: Opt Express
  doi: 10.1364/OE.408757
– volume: 38
  start-page: 6121
  issue: 21
  year: 2020
  ident: 10.1016/j.optlaseng.2022.107318_bib0018
  article-title: Bipolar-coding φ-OTDR with interference fading elimination and frequency drift compensation
  publication-title: J Lightwave Technol
  doi: 10.1109/JLT.2020.3003440
– volume: 31
  start-page: 1191
  issue: 14
  year: 2019
  ident: 10.1016/j.optlaseng.2022.107318_bib0026
  article-title: Dynamic measurement based on the linear characteristic of phase change in Phi-OTDR
  publication-title: IEEE Photonics Technol Lett
  doi: 10.1109/LPT.2019.2921608
– start-page: TuE25
  year: 2018
  ident: 10.1016/j.optlaseng.2022.107318_bib0020
  article-title: Highly-sensitive distributed dynamic strain sensing via perfect periodic coherent codes
– volume: 139
  year: 2021
  ident: 10.1016/j.optlaseng.2022.107318_bib0001
  article-title: An anti-noise composite optical fiber vibration sensing system
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2020.106483
– volume: 20
  start-page: 2000
  issue: 7
  year: 2020
  ident: 10.1016/j.optlaseng.2022.107318_bib0022
  article-title: Optical fiber vibration sensor using least mean square error algorithm
  publication-title: Sensors
  doi: 10.3390/s20072000
– volume: 55
  start-page: 7810
  issue: 28
  year: 2016
  ident: 10.1016/j.optlaseng.2022.107318_bib0021
  article-title: Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer
  publication-title: Appl Opt
  doi: 10.1364/AO.55.007810
– volume: 42
  start-page: 391
  issue: 3
  year: 2017
  ident: 10.1016/j.optlaseng.2022.107318_bib0010
  article-title: High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse
  publication-title: Opt Lett
  doi: 10.1364/OL.42.000391
– volume: 6
  start-page: 6117
  issue: 4
  year: 2019
  ident: 10.1016/j.optlaseng.2022.107318_bib0017
  article-title: Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2869474
– volume: 5
  issue: 3
  year: 2020
  ident: 10.1016/j.optlaseng.2022.107318_bib0012
  article-title: Distributed acoustic sensing for seismic activity monitoring
  publication-title: APL Photonics
  doi: 10.1063/1.5139602
– volume: 24
  start-page: 22303
  issue: 19
  year: 2016
  ident: 10.1016/j.optlaseng.2022.107318_bib0009
  article-title: Real time dynamic strain monitoring of optical links using the back reflection of live PSK data
  publication-title: Opt Express
  doi: 10.1364/OE.24.022303
– volume: 37
  start-page: 4590
  issue: 18
  year: 2019
  ident: 10.1016/j.optlaseng.2022.107318_bib0004
  article-title: Long-range distributed static strain sensing with <100 nano-strain resolution realized using OFDR
  publication-title: J Lightwave Technol
  doi: 10.1109/JLT.2019.2913284
– volume: 37
  start-page: 4462
  issue: 18
  year: 2019
  ident: 10.1016/j.optlaseng.2022.107318_bib0030
  article-title: 108-km distributed acoustic sensor with 220-pε/√Hz strain resolution and 5-m spatial resolution
  publication-title: J Lightwave Technol
  doi: 10.1109/JLT.2019.2901276
– volume: 7
  start-page: 1
  issue: 6
  year: 2015
  ident: 10.1016/j.optlaseng.2022.107318_bib0024
  article-title: Distributed fiber voice sensor based on phase-sensitive optical time-domain reflectometry
  publication-title: IEEE Photonics J
  doi: 10.1109/JPHOT.2015.2499539
– volume: 22
  start-page: 1134
  issue: 10
  year: 2020
  ident: 10.1016/j.optlaseng.2022.107318_bib0028
  article-title: Deep learning-based security verification for a random number generator using white chaos
  publication-title: Entropy
  doi: 10.3390/e22101134
– volume: 13
  issue: 1
  year: 2020
  ident: 10.1016/j.optlaseng.2022.107318_bib0015
  article-title: High performance distributed acoustic sensor based on digital LFM pulse coherent-optical time domain reflectometer for intrapulse event
  publication-title: Appl Phys Express
  doi: 10.7567/1882-0786/ab6133
– volume: 44
  start-page: 5969
  issue: 24
  year: 2019
  ident: 10.1016/j.optlaseng.2022.107318_bib0005
  article-title: Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation
  publication-title: Opt Lett
  doi: 10.1364/OL.44.005969
– volume: 27
  start-page: 2158
  issue: 20
  year: 2015
  ident: 10.1016/j.optlaseng.2022.107318_bib0006
  article-title: Frequency response enhancement by periodical nonuniform sampling in distributed sensing
  publication-title: IEEE Photonics Technol Lett
  doi: 10.1109/LPT.2015.2455525
– volume: 33
  start-page: 3660
  issue: 17
  year: 2015
  ident: 10.1016/j.optlaseng.2022.107318_bib0025
  article-title: Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions
  publication-title: J Lightwave Technol
  doi: 10.1109/JLT.2015.2449085
– volume: 21
  start-page: 22371
  issue: 20
  year: 2021
  ident: 10.1016/j.optlaseng.2022.107318_bib0027
  article-title: Pulse coding in distributed optical fiber vibration sensor: a review
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3098805
– volume: 49
  start-page: 65
  issue: 1
  year: 2021
  ident: 10.1016/j.optlaseng.2022.107318_bib0013
  article-title: Vibration monitoring for the West-East gas pipeline project of China by phase optical time domain reflectometry (phase-OTDR)
  publication-title: Instrum Sci Technol
  doi: 10.1080/10739149.2020.1780253
– volume: 25
  start-page: 3504
  issue: 4
  year: 2017
  ident: 10.1016/j.optlaseng.2022.107318_bib0029
  article-title: Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding
  publication-title: Opt Express
  doi: 10.1364/OE.25.003504
– volume: 24
  issue: 11
  year: 2014
  ident: 10.1016/j.optlaseng.2022.107318_bib0019
  article-title: A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal
  publication-title: Laser Phys
  doi: 10.1088/1054-660X/24/11/115106
– volume: 8
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.optlaseng.2022.107318_bib0016
  article-title: A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR
  publication-title: IEEE Photonics J
  doi: 10.1109/JPHOT.2015.2508427
– volume: 35
  start-page: 1248
  issue: 6
  year: 2017
  ident: 10.1016/j.optlaseng.2022.107318_bib0003
  article-title: Continuous multicore optical fiber grating arrays for distributed sensing applications
  publication-title: J Lightwave Technol
  doi: 10.1109/JLT.2017.2661680
– volume: 26
  start-page: 16138
  issue: 13
  year: 2018
  ident: 10.1016/j.optlaseng.2022.107318_bib0011
  article-title: High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution
  publication-title: Opt Express
  doi: 10.1364/OE.26.016138
SSID ssj0016411
Score 2.3394015
Snippet •Random coding method can bring SNR enhancement without loss of the sensing bandwidth.•The sensing distance can be extended without any light...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107318
SubjectTerms Distributed optical fiber vibration sensor
Phase-sensitive optical time domain reflectometry
Pulse coding
Random coding pulse
Title Random coding method for coherent detection φ-OTDR without optical amplifier
URI https://dx.doi.org/10.1016/j.optlaseng.2022.107318
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBaj3WB7KFu30duGHtan4WFbsSz3rfTCrm0p2ZY9GUWS15TWDk1S-gv69_qXeqQjKwkrdGM0DyYIThLrfDk-Ovr0HULeJawvVCWyqBB9eySHq0joPIlSaWIlIH9Vbvf8x9f84ED0esWRJ2SOXDuBvK7F1VUxfFBXwxg42x6d_Qd3hw-FAXgPTocruB2uf-X4Y1nr5vy9atxxFewQ7ciEqjkxTotJm7HBDuGbO_ubgkeH3d1jV5G1JOVmiOVtabnm1cCzd33-ejgMss6QdtvDv1ZyZKppGPg9AyT_Dk6a6eBPX5v-NQmxBhUMvshZy4kd6nlFcF-QSFnLYW6rZO1JmSktCQuXLLJ7lPjcwWArcjBm8Xw0Rm32PyI7FhlOP8Ak2Purf8PaPk1hPGc-gM_LZlvWmtsUTVMnSwiP6cU0zwoI3ovbn_Z6n8NeE-8k2LXS_8I5FuCdX3d3DjOTl3SfkyW_oKDbCIQX5JGpl8mzGZnJZfLE0XzV6CX5huCgCA6K4KAADtqCgwZw0JtrBwzqgUE9MGgAxivyfX-vu_Mx8g01IpVwWwfXOZO8yAxE3X7CKmlUrmG9qjLNjZXm62u7ER1rSForuF_Bue4kssOFKnjGDHtNFuqmNiuExrJKZKyYjCGgw6xKyBx5lakKXkVWiVXC2ykqlVebt01PzsqWVnhahrkt7dyWOLerJA6GQxRcud9kq_VB6fNGzAdLAM99xmv_Y7xOnk7_ARtkYXwxMW_IY3U5Howu3nqg3QL5AZVY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+coding+method+for+coherent+detection+%CF%86-OTDR+without+optical+amplifier&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Li%2C+Peihong&rft.au=Wang%2C+Yu&rft.au=Yin%2C+Kang&rft.au=Liu%2C+Xin&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=161&rft_id=info:doi/10.1016%2Fj.optlaseng.2022.107318&rft.externalDocID=S0143816622003712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon