ADVANCED DRONE-BASED MONITORING OF AGRICULTURAL, FORESTRY, AND AQUATIC ECOSYSTEMS: TECHNICAL FRAMEWORK
The rapid advancement of drone technology has significantly transformed environmental monitoring, enhancing capabilities for observing and managing agricultural, forestry, and aquatic ecosystems. This paper presents a comprehensive technical framework for implementing advanced drone-based systems in...
Uloženo v:
| Vydáno v: | Journal of Engineering Science (Chişinău) Ročník 32; číslo 2; s. 108 - 121 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Technical University of Moldova
15.07.2025
|
| Témata: | |
| ISSN: | 2587-3474, 2587-3482 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The rapid advancement of drone technology has significantly transformed environmental monitoring, enhancing capabilities for observing and managing agricultural, forestry, and aquatic ecosystems. This paper presents a comprehensive technical framework for implementing advanced drone-based systems into ecosystem monitoring, focusing on integrating high-resolution sensors, data processing, and artificial intelligence-based analytics. The framework incorporates modern technologies, including drones from Da-Jiang Innovations or First-Person View drones equipped with metric cameras for aerial photogrammetry. These can be further enhanced with multispectral and Light Detection and Ranging sensors to acquire real-time data, enabling more effective analysis. Furthermore, the Proxmox Virtual Environment is the core of the system’s architecture, increasing effective virtualisation and deployment. Core data processing technologies include Python scripts, Quantum Geographic Information System, and Pix4D software for photogrammetric reconstruction, as well as Elasticsearch for database management, acquisition, and storage. The Kibana platform ensures interactive data visualisation and supports evidence-based decision-making. The service-oriented structure and system modularity enable the rapid integration of new analytical tools that are adaptable to diverse ecological contexts. Validation in operational environments confirms the framework’s ability to address challenges in ecosystem management, particularly in remote areas. This integrated approach contributes to more sustainable and adaptive ecosystem monitoring and management practices. |
|---|---|
| AbstractList | The rapid advancement of drone technology has significantly transformed environmental monitoring, enhancing capabilities for observing and managing agricultural, forestry, and aquatic ecosystems. This paper presents a comprehensive technical framework for implementing advanced drone-based systems into ecosystem monitoring, focusing on integrating high-resolution sensors, data processing, and artificial intelligence-based analytics. The framework incorporates modern technologies, including drones from Da-Jiang Innovations or First-Person View drones equipped with metric cameras for aerial photogrammetry. These can be further enhanced with multispectral and Light Detection and Ranging sensors to acquire real-time data, enabling more effective analysis. Furthermore, the Proxmox Virtual Environment is the core of the system’s architecture, increasing effective virtualisation and deployment. Core data processing technologies include Python scripts, Quantum Geographic Information System, and Pix4D software for photogrammetric reconstruction, as well as Elasticsearch for database management, acquisition, and storage. The Kibana platform ensures interactive data visualisation and supports evidence-based decision-making. The service-oriented structure and system modularity enable the rapid integration of new analytical tools that are adaptable to diverse ecological contexts. Validation in operational environments confirms the framework’s ability to address challenges in ecosystem management, particularly in remote areas. This integrated approach contributes to more sustainable and adaptive ecosystem monitoring and management practices. |
| Author | Gutu, Maria Rotaru, Lilia Alexei, Victoria Kapusteanski, Maxim |
| Author_xml | – sequence: 1 givenname: Maria orcidid: 0000-0002-2820-393X surname: Gutu fullname: Gutu, Maria – sequence: 2 givenname: Lilia orcidid: 0000-0002-6578-418X surname: Rotaru fullname: Rotaru, Lilia – sequence: 3 givenname: Victoria orcidid: 0000-0003-4560-3131 surname: Alexei fullname: Alexei, Victoria – sequence: 4 givenname: Maxim orcidid: 0009-0004-5009-6503 surname: Kapusteanski fullname: Kapusteanski, Maxim |
| BookMark | eNo9kF1PgzAUhhujifPjL5heaiJ4aKG03lVgk7hBBKbZVdNCMVs2MaAX_nuZM169b95z8lw8Z-j4vXu3CF154AaEEna3sYP79blzCZDApeSa3LgeHKEJCXjoUJ-T4_8e-qfochg2AEC48BgPJqiV8YvMoiTGcZFnifMgy7Ev8iyt8iLNZjifYjkr0mg5r5aFnN_iaV4kZVWsbrHMYiyfl7JKI5xEebkqq2RR3uMqiR6zNJJzPC3kInnNi6cLdNLq7WAv__IcLadJFT0683y2_3RqjwE4tCHMt0AN9RvbGMM0cN1aHlAdcEJpAMJAK4QNme_p2tY-bU0oGCfCBwOWnqP0wG06vVEf_Xqn-2_V6bX6Hbr-Ten-c11vreJCENOwkRaCr1moITTGhLWoBfM8S0YWO7DqvhuG3rb_PA_Ur3w1ylejfLWXryhRRI03-gNRKXJi |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.52326/jes.utm.2025.32(2).10 |
| DatabaseName | CrossRef DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2587-3482 |
| EndPage | 121 |
| ExternalDocumentID | oai_doaj_org_article_8992bd6f99704a67a07bbb7c9c9611e2 10_52326_jes_utm_2025_32_2__10 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c1600-3d264e03b34dedbb6a08afe853a58233509b0f99e7641acec43fb79682940b0e3 |
| IEDL.DBID | DOA |
| ISSN | 2587-3474 |
| IngestDate | Fri Oct 03 12:41:17 EDT 2025 Sat Nov 29 07:40:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1600-3d264e03b34dedbb6a08afe853a58233509b0f99e7641acec43fb79682940b0e3 |
| ORCID | 0009-0004-5009-6503 0000-0002-6578-418X 0000-0003-4560-3131 0000-0002-2820-393X |
| OpenAccessLink | https://doaj.org/article/8992bd6f99704a67a07bbb7c9c9611e2 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8992bd6f99704a67a07bbb7c9c9611e2 crossref_primary_10_52326_jes_utm_2025_32_2__10 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-15 |
| PublicationDateYYYYMMDD | 2025-07-15 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Engineering Science (Chişinău) |
| PublicationYear | 2025 |
| Publisher | Technical University of Moldova |
| Publisher_xml | – name: Technical University of Moldova |
| SSID | ssj0002891685 |
| Score | 2.297234 |
| Snippet | The rapid advancement of drone technology has significantly transformed environmental monitoring, enhancing capabilities for observing and managing... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 108 |
| SubjectTerms | ai-driven analytics drone-based monitoring ecosystem management precision agriculture real-time data processing |
| Title | ADVANCED DRONE-BASED MONITORING OF AGRICULTURAL, FORESTRY, AND AQUATIC ECOSYSTEMS: TECHNICAL FRAMEWORK |
| URI | https://doaj.org/article/8992bd6f99704a67a07bbb7c9c9611e2 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2587-3482 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002891685 issn: 2587-3474 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcCCQIAoL3lgAKlpHdvxg60gKgZUMQDqZvkVRCUC9MHv55ykVTcW1iSKTt_Zvvvs83cIXXKfdOW0yzSVRcbz1OZFpGIqRSJ3jHpX9095fZTjsZpM9NNGq69UE9bIAzfADYAPUBdEqbUk3AppiXTOSa-9Fnke69WXSL1BpqbN8Vku6n6ctEiziEveXA8G3kXFYAokdLlIF9Fp0Wf0il730xXajci0IeBfR5rRHtptU0Q8bEzbR1uxOkDlsD2sx2H2WcUsRZ-AP-oZmbbm8GeJ7dtsraTRw5CNxtTJrYdtFbD9TpreHgPbbMSb5ze40W8FJ-FyVaJ1iF5G9893D1nbIyHzOeQqGQuQ0UTCHOMhBueEJcqWEYKwLRRlDPIBRwC8KAXPrY-es9JJLRTVnDgS2RHqVGD2McIiCOJLJakoSm6VdswKFbQCoGFRyFUXDVb4mK9GCsMAhagRNYCoAURNQtQwaqiBd110m2Bcf52krOsH4GDTOtj85eCT__jJKdpJlqVN2bw4Q53FbBnP0bb_WbzPZxf12PkFGHPG3g |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+drone-based+monitoring+of+agricultural%2C+forestry%2C+and+aquatic+ecosystems%3A+technical+framework&rft.jtitle=Journal+of+Engineering+Science+%28Chi%C5%9Fin%C4%83u%29&rft.au=GUTU%2C+Maria&rft.au=ROTARU%2C+Lilia&rft.au=ALEXEI%2C+Victoria&rft.au=KAPUSTEANSKI%2C+Maxim&rft.date=2025-07-15&rft.pub=Technical+University+of+Moldova&rft.issn=2587-3474&rft.eissn=2587-3482&rft.volume=XXXII&rft.issue=2&rft.spage=108&rft.epage=121&rft_id=info:doi/10.52326%2Fjes.utm.2025.32%282%29.10&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8992bd6f99704a67a07bbb7c9c9611e2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2587-3474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2587-3474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2587-3474&client=summon |