ADVANCED DRONE-BASED MONITORING OF AGRICULTURAL, FORESTRY, AND AQUATIC ECOSYSTEMS: TECHNICAL FRAMEWORK

The rapid advancement of drone technology has significantly transformed environmental monitoring, enhancing capabilities for observing and managing agricultural, forestry, and aquatic ecosystems. This paper presents a comprehensive technical framework for implementing advanced drone-based systems in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Engineering Science (Chişinău) Ročník 32; číslo 2; s. 108 - 121
Hlavní autoři: Gutu, Maria, Rotaru, Lilia, Alexei, Victoria, Kapusteanski, Maxim
Médium: Journal Article
Jazyk:angličtina
Vydáno: Technical University of Moldova 15.07.2025
Témata:
ISSN:2587-3474, 2587-3482
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rapid advancement of drone technology has significantly transformed environmental monitoring, enhancing capabilities for observing and managing agricultural, forestry, and aquatic ecosystems. This paper presents a comprehensive technical framework for implementing advanced drone-based systems into ecosystem monitoring, focusing on integrating high-resolution sensors, data processing, and artificial intelligence-based analytics. The framework incorporates modern technologies, including drones from Da-Jiang Innovations or First-Person View drones equipped with metric cameras for aerial photogrammetry. These can be further enhanced with multispectral and Light Detection and Ranging sensors to acquire real-time data, enabling more effective analysis. Furthermore, the Proxmox Virtual Environment is the core of the system’s architecture, increasing effective virtualisation and deployment. Core data processing technologies include Python scripts, Quantum Geographic Information System, and Pix4D software for photogrammetric reconstruction, as well as Elasticsearch for database management, acquisition, and storage. The Kibana platform ensures interactive data visualisation and supports evidence-based decision-making. The service-oriented structure and system modularity enable the rapid integration of new analytical tools that are adaptable to diverse ecological contexts. Validation in operational environments confirms the framework’s ability to address challenges in ecosystem management, particularly in remote areas. This integrated approach contributes to more sustainable and adaptive ecosystem monitoring and management practices.
AbstractList The rapid advancement of drone technology has significantly transformed environmental monitoring, enhancing capabilities for observing and managing agricultural, forestry, and aquatic ecosystems. This paper presents a comprehensive technical framework for implementing advanced drone-based systems into ecosystem monitoring, focusing on integrating high-resolution sensors, data processing, and artificial intelligence-based analytics. The framework incorporates modern technologies, including drones from Da-Jiang Innovations or First-Person View drones equipped with metric cameras for aerial photogrammetry. These can be further enhanced with multispectral and Light Detection and Ranging sensors to acquire real-time data, enabling more effective analysis. Furthermore, the Proxmox Virtual Environment is the core of the system’s architecture, increasing effective virtualisation and deployment. Core data processing technologies include Python scripts, Quantum Geographic Information System, and Pix4D software for photogrammetric reconstruction, as well as Elasticsearch for database management, acquisition, and storage. The Kibana platform ensures interactive data visualisation and supports evidence-based decision-making. The service-oriented structure and system modularity enable the rapid integration of new analytical tools that are adaptable to diverse ecological contexts. Validation in operational environments confirms the framework’s ability to address challenges in ecosystem management, particularly in remote areas. This integrated approach contributes to more sustainable and adaptive ecosystem monitoring and management practices.
Author Gutu, Maria
Rotaru, Lilia
Alexei, Victoria
Kapusteanski, Maxim
Author_xml – sequence: 1
  givenname: Maria
  orcidid: 0000-0002-2820-393X
  surname: Gutu
  fullname: Gutu, Maria
– sequence: 2
  givenname: Lilia
  orcidid: 0000-0002-6578-418X
  surname: Rotaru
  fullname: Rotaru, Lilia
– sequence: 3
  givenname: Victoria
  orcidid: 0000-0003-4560-3131
  surname: Alexei
  fullname: Alexei, Victoria
– sequence: 4
  givenname: Maxim
  orcidid: 0009-0004-5009-6503
  surname: Kapusteanski
  fullname: Kapusteanski, Maxim
BookMark eNo9kF1PgzAUhhujifPjL5heaiJ4aKG03lVgk7hBBKbZVdNCMVs2MaAX_nuZM169b95z8lw8Z-j4vXu3CF154AaEEna3sYP79blzCZDApeSa3LgeHKEJCXjoUJ-T4_8e-qfochg2AEC48BgPJqiV8YvMoiTGcZFnifMgy7Ev8iyt8iLNZjifYjkr0mg5r5aFnN_iaV4kZVWsbrHMYiyfl7JKI5xEebkqq2RR3uMqiR6zNJJzPC3kInnNi6cLdNLq7WAv__IcLadJFT0683y2_3RqjwE4tCHMt0AN9RvbGMM0cN1aHlAdcEJpAMJAK4QNme_p2tY-bU0oGCfCBwOWnqP0wG06vVEf_Xqn-2_V6bX6Hbr-Ten-c11vreJCENOwkRaCr1moITTGhLWoBfM8S0YWO7DqvhuG3rb_PA_Ur3w1ylejfLWXryhRRI03-gNRKXJi
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.52326/jes.utm.2025.32(2).10
DatabaseName CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2587-3482
EndPage 121
ExternalDocumentID oai_doaj_org_article_8992bd6f99704a67a07bbb7c9c9611e2
10_52326_jes_utm_2025_32_2__10
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c1600-3d264e03b34dedbb6a08afe853a58233509b0f99e7641acec43fb79682940b0e3
IEDL.DBID DOA
ISSN 2587-3474
IngestDate Fri Oct 03 12:41:17 EDT 2025
Sat Nov 29 07:40:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1600-3d264e03b34dedbb6a08afe853a58233509b0f99e7641acec43fb79682940b0e3
ORCID 0009-0004-5009-6503
0000-0002-6578-418X
0000-0003-4560-3131
0000-0002-2820-393X
OpenAccessLink https://doaj.org/article/8992bd6f99704a67a07bbb7c9c9611e2
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_8992bd6f99704a67a07bbb7c9c9611e2
crossref_primary_10_52326_jes_utm_2025_32_2__10
PublicationCentury 2000
PublicationDate 2025-07-15
PublicationDateYYYYMMDD 2025-07-15
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of Engineering Science (Chişinău)
PublicationYear 2025
Publisher Technical University of Moldova
Publisher_xml – name: Technical University of Moldova
SSID ssj0002891685
Score 2.297234
Snippet The rapid advancement of drone technology has significantly transformed environmental monitoring, enhancing capabilities for observing and managing...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 108
SubjectTerms ai-driven analytics
drone-based monitoring
ecosystem management
precision agriculture
real-time data processing
Title ADVANCED DRONE-BASED MONITORING OF AGRICULTURAL, FORESTRY, AND AQUATIC ECOSYSTEMS: TECHNICAL FRAMEWORK
URI https://doaj.org/article/8992bd6f99704a67a07bbb7c9c9611e2
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2587-3482
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002891685
  issn: 2587-3474
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcCCQIAoL3lgAKlpHdvxg60gKgZUMQDqZvkVRCUC9MHv55ykVTcW1iSKTt_Zvvvs83cIXXKfdOW0yzSVRcbz1OZFpGIqRSJ3jHpX9095fZTjsZpM9NNGq69UE9bIAzfADYAPUBdEqbUk3AppiXTOSa-9Fnke69WXSL1BpqbN8Vku6n6ctEiziEveXA8G3kXFYAokdLlIF9Fp0Wf0il730xXajci0IeBfR5rRHtptU0Q8bEzbR1uxOkDlsD2sx2H2WcUsRZ-AP-oZmbbm8GeJ7dtsraTRw5CNxtTJrYdtFbD9TpreHgPbbMSb5ze40W8FJ-FyVaJ1iF5G9893D1nbIyHzOeQqGQuQ0UTCHOMhBueEJcqWEYKwLRRlDPIBRwC8KAXPrY-es9JJLRTVnDgS2RHqVGD2McIiCOJLJakoSm6VdswKFbQCoGFRyFUXDVb4mK9GCsMAhagRNYCoAURNQtQwaqiBd110m2Bcf52krOsH4GDTOtj85eCT__jJKdpJlqVN2bw4Q53FbBnP0bb_WbzPZxf12PkFGHPG3g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+drone-based+monitoring+of+agricultural%2C+forestry%2C+and+aquatic+ecosystems%3A+technical+framework&rft.jtitle=Journal+of+Engineering+Science+%28Chi%C5%9Fin%C4%83u%29&rft.au=GUTU%2C+Maria&rft.au=ROTARU%2C+Lilia&rft.au=ALEXEI%2C+Victoria&rft.au=KAPUSTEANSKI%2C+Maxim&rft.date=2025-07-15&rft.pub=Technical+University+of+Moldova&rft.issn=2587-3474&rft.eissn=2587-3482&rft.volume=XXXII&rft.issue=2&rft.spage=108&rft.epage=121&rft_id=info:doi/10.52326%2Fjes.utm.2025.32%282%29.10&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8992bd6f99704a67a07bbb7c9c9611e2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2587-3474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2587-3474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2587-3474&client=summon