ML-based categorical boosting with hybrid transfer learning model for enhancing cyber threat intelligence in IoV environment
The increasing complexity of the Internet of Vehicles (IoV) necessitates robust Intrusion Detection Systems (IDS) to protect against cyberattacks. Recent studies show a 60% rise in attacks targeting vehicular communication systems, with 45% attributed to attacks. Existing IoV-based IDS methods face...
Uloženo v:
| Vydáno v: | Journal of Umm Al-Qura University for Engineering and Architecture |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
17.10.2025
|
| ISSN: | 2731-6688, 1658-8150 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The increasing complexity of the Internet of Vehicles (IoV) necessitates robust Intrusion Detection Systems (IDS) to protect against cyberattacks. Recent studies show a 60% rise in attacks targeting vehicular communication systems, with 45% attributed to attacks. Existing IoV-based IDS methods face challenges such as imbalanced datasets and limited feature extraction capabilities, which hinder accurate threat detection. The proposed IoV-Net framework addresses these issues by integrating comprehensive data preprocessing, where noise and redundancies in the Canadian Institute for Cybersecurity collected IoV 2024 (CICIoV2024) dataset are eliminated, followed by dimensionality reduction. For feature extraction, the Transfer Learning Adopted Hybrid Inception-ResNetV2 (TLA-HIR) model is employed, leveraging its superior ability to capture both local and global patterns in IoV data. To tackle class imbalance, the Adaptive Synthetic Minority Over-Sampling (ASMOS) technique is introduced, enhancing the dataset with synthetic samples for underrepresented classes, thus preventing overfitting. Finally, the Machine Learning-based Categorical Boosting (MLCB) Classifier is implemented, ensuring high accuracy in attack classification by utilizing gradient boosting and efficient handling of categorical features. This methodology, applied to the CICIoV2024 dataset with the feature analysis on three cases: binary, decimal, and hexadecimal, promises improved detection rates for sophisticated IoV-based attacks with an accuracy of 99.84%, 99.88%, and 99.88%, respectively. |
|---|---|
| AbstractList | The increasing complexity of the Internet of Vehicles (IoV) necessitates robust Intrusion Detection Systems (IDS) to protect against cyberattacks. Recent studies show a 60% rise in attacks targeting vehicular communication systems, with 45% attributed to attacks. Existing IoV-based IDS methods face challenges such as imbalanced datasets and limited feature extraction capabilities, which hinder accurate threat detection. The proposed IoV-Net framework addresses these issues by integrating comprehensive data preprocessing, where noise and redundancies in the Canadian Institute for Cybersecurity collected IoV 2024 (CICIoV2024) dataset are eliminated, followed by dimensionality reduction. For feature extraction, the Transfer Learning Adopted Hybrid Inception-ResNetV2 (TLA-HIR) model is employed, leveraging its superior ability to capture both local and global patterns in IoV data. To tackle class imbalance, the Adaptive Synthetic Minority Over-Sampling (ASMOS) technique is introduced, enhancing the dataset with synthetic samples for underrepresented classes, thus preventing overfitting. Finally, the Machine Learning-based Categorical Boosting (MLCB) Classifier is implemented, ensuring high accuracy in attack classification by utilizing gradient boosting and efficient handling of categorical features. This methodology, applied to the CICIoV2024 dataset with the feature analysis on three cases: binary, decimal, and hexadecimal, promises improved detection rates for sophisticated IoV-based attacks with an accuracy of 99.84%, 99.88%, and 99.88%, respectively. |
| Author | Praveen Krishna, Anne Venkata Supriya, Dhanda |
| Author_xml | – sequence: 1 givenname: Dhanda surname: Supriya fullname: Supriya, Dhanda – sequence: 2 givenname: Anne Venkata surname: Praveen Krishna fullname: Praveen Krishna, Anne Venkata |
| BookMark | eNotkNtKAzEQhoNUsNa-gFd5gdUcNnu4lOKhUPFGvQ3ZZNKNbBNJgrbgw5taL2aGf-bnh_ku0cwHDwhdU3JDCWlvU837XlSElSKs9P0ZmtNGdFVHBZmhOWs5rZqm6y7QMqUPUlxdT7mo5-jneVMNKoHBWmXYhui0mvAQQsrOb_G3yyMeD0N0BueofLIQ8QQq-uN1FwxM2IaIwY_K6-NOH4ZiyWMElbHzGabJbcFrKAKvw3uxfrkY_A58vkLnVk0Jlv9zgd4e7l9XT9Xm5XG9uttUmop-X_VCWz1wwUCXT1hHlGpqUtvGcKOHvjVmMMI03BbFTGtqbgXpW81MLbRhhi8QO-XqGFKKYOVndDsVD5ISeUQoTwhlQSj_EMo9_wU-XWpO |
| Cites_doi | 10.1109/JIOT.2024.3441763 10.1109/JIOT.2024.3414492 10.1109/TVT.2024.3402366 10.1016/j.adhoc.2023.103330 10.1109/VNC61989.2024.10575970 10.1038/s41598-023-50906-7 10.1007/s10207-024-00903-2 10.1109/TVT.2024.3385916 10.1109/ISCS61804.2024.10581038 10.1109/ACCESS.2024.3382992 10.1109/TIFS.2024.3426304 10.1109/OJVT.2024.3422253 10.3390/s22041340 10.1007/978-3-031-68606-1_12 10.32604/cmc.2024.053037 10.1016/j.cose.2024.103962 10.1109/JIOT.2024.3397652 10.1145/3695998 10.1016/j.iot.2024.101209 10.1109/AIIoT61789.2024.10579000 10.1109/ACCESS.2024.3368392 10.1016/j.cose.2024.104067 10.1109/ACCESS.2024.3416840 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s43995-025-00225-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1658-8150 |
| ExternalDocumentID | 10_1007_s43995_025_00225_x |
| GroupedDBID | 0R~ AAKKN AAYXX ABEEZ ACACY ACULB AFFHD AFGXO AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR C24 C6C CCPQU CITATION EBS GROUPED_DOAJ M~E PHGZM PHGZT PIMPY SOJ |
| ID | FETCH-LOGICAL-c159x-95cfcb352ec273280aa6404f6d3dcb97ddbd5d63fdcb2d7d43f5097c2d45cd2d3 |
| ISSN | 2731-6688 |
| IngestDate | Sat Nov 29 07:05:18 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c159x-95cfcb352ec273280aa6404f6d3dcb97ddbd5d63fdcb2d7d43f5097c2d45cd2d3 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s43995-025-00225-x.pdf |
| ParticipantIDs | crossref_primary_10_1007_s43995_025_00225_x |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-17 |
| PublicationDateYYYYMMDD | 2025-10-17 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Umm Al-Qura University for Engineering and Architecture |
| PublicationYear | 2025 |
| References | 225_CR9 MB Anley (225_CR22) 2024; 144 M Almehdhar (225_CR23) 2024; 5 225_CR24 AA Korba (225_CR3) 2024; 73 K Huang (225_CR2) 2024; 147 225_CR19 225_CR18 225_CR14 225_CR17 225_CR11 225_CR10 225_CR13 ECP Neto (225_CR20) 2024; 26 A Verma (225_CR4) 2024; 12 X Han (225_CR25) 2024; 19 NA Amirudin (225_CR15) 2024; 7 225_CR1 J Gao (225_CR8) 2024 MS Korium (225_CR16) 2024; 153 225_CR5 225_CR6 225_CR7 J Prakash (225_CR21) 2024; 14 K Zhang (225_CR12) 2024; 12 |
| References_xml | – year: 2024 ident: 225_CR8 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2024.3441763 – ident: 225_CR7 doi: 10.1109/JIOT.2024.3414492 – ident: 225_CR10 doi: 10.1109/TVT.2024.3402366 – volume: 153 year: 2024 ident: 225_CR16 publication-title: ad hoc networks doi: 10.1016/j.adhoc.2023.103330 – ident: 225_CR13 doi: 10.1109/VNC61989.2024.10575970 – volume: 7 start-page: 1 issue: 1 year: 2024 ident: 225_CR15 publication-title: Platform J Sci Technol – volume: 14 start-page: 468 issue: 1 year: 2024 ident: 225_CR21 publication-title: Sci Rep doi: 10.1038/s41598-023-50906-7 – ident: 225_CR18 doi: 10.1007/s10207-024-00903-2 – volume: 73 start-page: 12399 issue: 9 year: 2024 ident: 225_CR3 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2024.3385916 – ident: 225_CR6 doi: 10.1109/ISCS61804.2024.10581038 – volume: 12 start-page: 48301 year: 2024 ident: 225_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3382992 – volume: 19 start-page: 6871 year: 2024 ident: 225_CR25 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2024.3426304 – volume: 5 start-page: 869 year: 2024 ident: 225_CR23 publication-title: IEEE Open J Veh Technol doi: 10.1109/OJVT.2024.3422253 – ident: 225_CR1 doi: 10.3390/s22041340 – ident: 225_CR17 – ident: 225_CR9 doi: 10.1007/978-3-031-68606-1_12 – ident: 225_CR11 doi: 10.32604/cmc.2024.053037 – volume: 144 start-page: 103962 year: 2024 ident: 225_CR22 publication-title: Elsevier BV doi: 10.1016/j.cose.2024.103962 – ident: 225_CR5 doi: 10.1109/JIOT.2024.3397652 – ident: 225_CR14 doi: 10.1145/3695998 – volume: 26 start-page: 101209 year: 2024 ident: 225_CR20 publication-title: Elsevier BV doi: 10.1016/j.iot.2024.101209 – ident: 225_CR24 doi: 10.1109/AIIoT61789.2024.10579000 – volume: 12 start-page: 28911 year: 2024 ident: 225_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3368392 – volume: 147 year: 2024 ident: 225_CR2 publication-title: Computers & Security doi: 10.1016/j.cose.2024.104067 – ident: 225_CR19 doi: 10.1109/ACCESS.2024.3416840 |
| SSID | ssj0002891354 |
| Score | 2.3062959 |
| Snippet | The increasing complexity of the Internet of Vehicles (IoV) necessitates robust Intrusion Detection Systems (IDS) to protect against cyberattacks. Recent... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | ML-based categorical boosting with hybrid transfer learning model for enhancing cyber threat intelligence in IoV environment |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1658-8150 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002891354 issn: 2731-6688 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1658-8150 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002891354 issn: 2731-6688 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1658-8150 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002891354 issn: 2731-6688 databaseCode: BENPR dateStart: 20250601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1658-8150 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002891354 issn: 2731-6688 databaseCode: PIMPY dateStart: 20250601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 1658-8150 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002891354 issn: 2731-6688 databaseCode: C24 dateStart: 20221201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PS-NAFB6K68E9yOoqq64yh72FWZofk0mORXZZQcUFLd5KMjOxRR1LWqUF8Q_xr_W9mSYdFGE97KGhCWEa8r7OfPPe-94j5EcSdnUl4Y9UqlyzJAsrVsCyzHSouYDtQ6VsRLd_LE5Ps8vL_KzTeW60MA83wphsNsvH_9XUcA2MjdLZD5i7HRQuwHcwOhzB7HD8J8OfHDNcmlSAuU5XixIgwKUn09bvOpyjTgvbQwBp1XXTOuLK9cVxVcDNECtxoCJ3XmrMRLS-hJFfwXNkgqO7vq-Ve4fqXtzeBr0b9ve-LvxMEPwdrx6ijWP0vMDGMmA1rkdzF5hCR3-7kpxh7yRt7Ew1dOK2HqwbQV-ba6e5az0aka2E6gScbuIDRhWyNHXt_n5qNzEDU2JZ6IrUvpn2XabHBPdWqDeHD1ATzmbLRa4J7L9a-9qMxLZ6sx1jAGMM7Bi4P_kUCZ5juuDJ09J_F2F81zbZax93ocmyysw3j-LxHo_AnH8h6wtz0J5DzAbpaLNJPnvv_yt5bLBDPezQBjsUsUMddmiDHdpgh1rsULApbbFDLXaoww71sQMnFLBDPexskYvfv84P_7BFew4mgQPPWM5lJUsg8FpGWPKpWxRp0k2qVMVKlrlQqlRcpXEFZ5ESKokrYKdCRirhUkUq3iYr5s7ob4SGUgBTUjyTXCdaxgWwzCKDu6QA-srlDgmalzcYuyosg_cttvuhu_fI2hKE38nKtL7X-2RVPkxHk_rA-mgOrOlfAEiTh1k |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ML-based+categorical+boosting+with+hybrid+transfer+learning+model+for+enhancing+cyber+threat+intelligence+in+IoV+environment&rft.jtitle=Journal+of+Umm+Al-Qura+University+for+Engineering+and+Architecture&rft.au=Supriya%2C+Dhanda&rft.au=Praveen+Krishna%2C+Anne+Venkata&rft.date=2025-10-17&rft.issn=2731-6688&rft.eissn=1658-8150&rft_id=info:doi/10.1007%2Fs43995-025-00225-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43995_025_00225_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-6688&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-6688&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-6688&client=summon |