Deep Learning Hyper Parameter Optimization for Video Analytic in Centralized System

A framework to perform video examination is proposed utilizing a powerfully tuned convolutional arrange. Recordings are gotten from distributed storage, preprocessed, and a model for supporting order is created on these video streams utilizing cloud-based framework. A key spotlight in this paper is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of engineering and advanced technology Ročník 9; číslo 1; s. 7300 - 7305
Hlavní autoři: V., Arun, Bhattacharjee, Shuvam, Khandelwal, Ritik, Malik, Kanishk
Médium: Journal Article
Jazyk:angličtina
Vydáno: 30.10.2019
ISSN:2249-8958, 2249-8958
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A framework to perform video examination is proposed utilizing a powerfully tuned convolutional arrange. Recordings are gotten from distributed storage, preprocessed, and a model for supporting order is created on these video streams utilizing cloud-based framework. A key spotlight in this paper is on tuning hyper-parameters related with the profound learning calculation used to build the model. We further propose a programmed video object order pipeline to approve the framework. The scientific model used to help hyper-parameter tuning improves execution of the proposed pipeline, and results of different parameters on framework's presentation is analyzed. Along these lines, the parameters that contribute toward the most ideal presentation are chosen for the video object order pipeline. Our examination based approval uncovers an exactness and accuracy of 97% and 96%, separately. The framework demonstrated to be adaptable, strong, and adjustable for a wide range of utilizations.
AbstractList A framework to perform video examination is proposed utilizing a powerfully tuned convolutional arrange. Recordings are gotten from distributed storage, preprocessed, and a model for supporting order is created on these video streams utilizing cloud-based framework. A key spotlight in this paper is on tuning hyper-parameters related with the profound learning calculation used to build the model. We further propose a programmed video object order pipeline to approve the framework. The scientific model used to help hyper-parameter tuning improves execution of the proposed pipeline, and results of different parameters on framework's presentation is analyzed. Along these lines, the parameters that contribute toward the most ideal presentation are chosen for the video object order pipeline. Our examination based approval uncovers an exactness and accuracy of 97% and 96%, separately. The framework demonstrated to be adaptable, strong, and adjustable for a wide range of utilizations.
Author Malik, Kanishk
Khandelwal, Ritik
V., Arun
Bhattacharjee, Shuvam
Author_xml – sequence: 1
  givenname: Arun
  surname: V.
  fullname: V., Arun
– sequence: 2
  givenname: Shuvam
  surname: Bhattacharjee
  fullname: Bhattacharjee, Shuvam
– sequence: 3
  givenname: Ritik
  surname: Khandelwal
  fullname: Khandelwal, Ritik
– sequence: 4
  givenname: Kanishk
  surname: Malik
  fullname: Malik, Kanishk
BookMark eNpNkL1ugzAUha0qlZqmeYIufgGozcWAR0R_UgkpldJ2RcZcKkdgkPFCnr6IdOhZvqMznOG7Jxs7WCTkkbMQhIzZkzmj8mHOIy5CziTn8oZsoyiWQSZFtvnX78h-ms5sSSoiYHxLTs-IIy1ROWvsDz3MIzr6oZzq0S_tOHrTm4vyZrC0HRz9Ng0ONLeqm73R1FhaoPVOdeaCDT3Nk8f-gdy2qptw_8cd-Xp9-SwOQXl8ey_yMtBcSBnUsQaENlE6SkBjzNuaJ00S11KihjbDtNYsEyAAoE5UrBO2jDxdoJo6TWFH4Pqr3TBNDttqdKZXbq44q1Y11aqmWtVUVzXwC-DdWxM
ContentType Journal Article
CorporateAuthor Assistant Professor, Department of Computer Science Engineering,SRM Institute of Science & Technology, Chennai, India
Department of Computer Science Engineering SRM Institute of Science & Technology Chennai, India
CorporateAuthor_xml – name: Assistant Professor, Department of Computer Science Engineering,SRM Institute of Science & Technology, Chennai, India
– name: Department of Computer Science Engineering SRM Institute of Science & Technology Chennai, India
DBID AAYXX
CITATION
DOI 10.35940/ijeat.A1215.109119
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2249-8958
EndPage 7305
ExternalDocumentID 10_35940_ijeat_A1215_109119
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ID FETCH-LOGICAL-c1599-b4c3e3f6ac263ce41fb16d64b99ec3f8e7bc08535333b6a4c60f8e1760fadb773
ISSN 2249-8958
IngestDate Sat Nov 29 02:52:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1599-b4c3e3f6ac263ce41fb16d64b99ec3f8e7bc08535333b6a4c60f8e1760fadb773
OpenAccessLink https://doi.org/10.35940/ijeat.a1215.109119
PageCount 6
ParticipantIDs crossref_primary_10_35940_ijeat_A1215_109119
PublicationCentury 2000
PublicationDate 2019-10-30
PublicationDateYYYYMMDD 2019-10-30
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-30
  day: 30
PublicationDecade 2010
PublicationTitle International journal of engineering and advanced technology
PublicationYear 2019
SSID ssj0000752301
Score 2.0838768
Snippet A framework to perform video examination is proposed utilizing a powerfully tuned convolutional arrange. Recordings are gotten from distributed storage,...
SourceID crossref
SourceType Index Database
StartPage 7300
Title Deep Learning Hyper Parameter Optimization for Video Analytic in Centralized System
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2249-8958
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000752301
  issn: 2249-8958
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEF0FyoELpQUELVR76C0Y_LHZ9R4ptOKSFFFA3Kz1ek3Mh4mCkyIO_L7-LGZ3bcdpEIIDFyfeRCMn8zTzdjTzFqHvlLgyBKbheCz1HaIocXgoU8cVnZRIj_pxIs1hE6zXC8_P-VGr9a-ahRlfszwP7-_54F1dDWvgbD06-wZ310ZhAd6D0-EKbofrqxx_oNSgkk29aB_CPnMIPFH3YGk9xN8QIm7K2UvTYniWJerWapNo7VY9BGgLvtmD5qJG6LnJYKdLiA3hCTVRNrQKsFV3QTFTvT-zIWk4qpH5oy-KQugRsMtSub8_GoubOh3o-r66_mtOJ2gfZ0VWDxh14UmvbF9Int31r5plDI-b-O9Ooh1QCe6E3Oq476hn1spwzWdQaUOvFt5vpHG47TyXIoIOJ7qpMruEXLezp8U1tKSWVwbuKUHu_xJl3b4IGydjJjJGImMkskbm0AefdbhuLuw-Tqp9QMxgr6d3__VvshJYxs7u7MM0aFKD75wso6Vyo4L3LMA-oZbKP6OP1SEguMwJK-iPxhuu8IYN3nCNN9zEGwa8YYM3XOENZzlu4A1bvK2i018_T_YPnfKkDkcCHeZOTGSggpQK6dNAKuKlsUcTSmLOlQzSULFYArcPYG8RxFQQSV1Y9Bi8iCRmLFhD8_ltrtYRjiWkYKaFKH1JwkTBp1IqLwXiHwrh-htou_pjooEVZIle8MeXt339K1qcgHMTzRfDkdpCC3JcZHfDb8anT440h9k
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Hyper+Parameter+Optimization+for+Video+Analytic+in+Centralized+System&rft.jtitle=International+journal+of+engineering+and+advanced+technology&rft.au=V.%2C+Arun&rft.au=Bhattacharjee%2C+Shuvam&rft.au=Khandelwal%2C+Ritik&rft.au=Malik%2C+Kanishk&rft.date=2019-10-30&rft.issn=2249-8958&rft.eissn=2249-8958&rft.volume=9&rft.issue=1&rft.spage=7300&rft.epage=7305&rft_id=info:doi/10.35940%2Fijeat.A1215.109119&rft.externalDBID=n%2Fa&rft.externalDocID=10_35940_ijeat_A1215_109119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2249-8958&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2249-8958&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2249-8958&client=summon