Iot based Agriculture Drought Prediction using Chaotic Genetic Algorithm Integrated Intuitionist Fuzzy Subtractive Clustering

The exponential demand in usage of internet of Things (IoT) devices, there is a vast effective improvement in commination among different things. Especially in the field of agriculture, IoT based applications plays a vital role to make the functionalities more reliable. With the perception of IoT an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering Jg. 8; H. 4; S. 2303 - 2311
Hauptverfasser: Margaret, M. Rose, Pavithra, Dr. L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 30.11.2019
ISSN:2277-3878, 2277-3878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The exponential demand in usage of internet of Things (IoT) devices, there is a vast effective improvement in commination among different things. Especially in the field of agriculture, IoT based applications plays a vital role to make the functionalities more reliable. With the perception of IoT and wireless sensor network, smart intelligent farming system has become a significant research area for researchers. Several researchers have developed automation and monitoring system for various agricultural functionalities. One of the serious issues is agricultural droughts which affect crop production or the ecology of the range. This research work aims to overwhelm this issue positively by enhancing the agriculture drought prediction in India. This proposed technique enriches the quality of the dataset by finding the similar patterns using chaos genetic algorithm based Intuitionistic fuzzy Subtractive Clustering. The uncertainty in drought prediction is greatly handled by representing the dataset in the form of intuitionistic fuzzy domain which gives more importance to the degree of indeterminacy. Intuitionistic fuzzy inference system is enhanced with the knowledge of subtractive clustering. The cluster centroids are selected by the chaotic genetic algorithm,which overcomes the earlier convergence and increase the search space in a parallel manner to handle voluminous agriculture dataset. Feed forward neural network is used for predicting the clustered agriculture dataset to provide intelligent smart solution for drought prediction and to improve the crop growth monitoring task by farmers.
AbstractList The exponential demand in usage of internet of Things (IoT) devices, there is a vast effective improvement in commination among different things. Especially in the field of agriculture, IoT based applications plays a vital role to make the functionalities more reliable. With the perception of IoT and wireless sensor network, smart intelligent farming system has become a significant research area for researchers. Several researchers have developed automation and monitoring system for various agricultural functionalities. One of the serious issues is agricultural droughts which affect crop production or the ecology of the range. This research work aims to overwhelm this issue positively by enhancing the agriculture drought prediction in India. This proposed technique enriches the quality of the dataset by finding the similar patterns using chaos genetic algorithm based Intuitionistic fuzzy Subtractive Clustering. The uncertainty in drought prediction is greatly handled by representing the dataset in the form of intuitionistic fuzzy domain which gives more importance to the degree of indeterminacy. Intuitionistic fuzzy inference system is enhanced with the knowledge of subtractive clustering. The cluster centroids are selected by the chaotic genetic algorithm,which overcomes the earlier convergence and increase the search space in a parallel manner to handle voluminous agriculture dataset. Feed forward neural network is used for predicting the clustered agriculture dataset to provide intelligent smart solution for drought prediction and to improve the crop growth monitoring task by farmers.
Author Pavithra, Dr. L.
Margaret, M. Rose
Author_xml – sequence: 1
  givenname: M. Rose
  surname: Margaret
  fullname: Margaret, M. Rose
– sequence: 2
  givenname: Dr. L.
  surname: Pavithra
  fullname: Pavithra, Dr. L.
BookMark eNpNkMtOwkAYRicGExF5AjfzAsWZTi8zS1IEm5Booq6b9u_fMqS0Zi4mkPjuFnDh6jub7yzOPZn0Q4-EPHK2ELGK2JPeG4eLleQiXXAuI65uyDQM0zQQMpWTf3xH5tbuGWNcJDwSyZT85IOjVWmxpsvWaPCd8wbpygy-3Tn6ZrDW4PTQU29139JsVw5OA91gj-dddu1gtNsdaN47bE3pRtOIXp9P2jq69qfTkb77yplyNH0jzTpvHZpR90Bum7KzOP_bGflcP39kL8H2dZNny20APFYqkNjEFYSs5ixWoJKK14mARApkFW9kNGbgCQMeNjIBrBvASNa1YgARSIYgZkRcvWAGaw02xZfRh9IcC86KS8TiErG4RCyuEcUvdlVsEw
ContentType Journal Article
CorporateAuthor Ph.D in Computer Science from Bharathiar University
Assistant professor Department of Information Technology, CMS College of Science and Commerce Coimbatore
CorporateAuthor_xml – name: Ph.D in Computer Science from Bharathiar University
– name: Assistant professor Department of Information Technology, CMS College of Science and Commerce Coimbatore
DBID AAYXX
CITATION
DOI 10.35940/ijrte.D8137.118419
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2277-3878
EndPage 2311
ExternalDocumentID 10_35940_ijrte_D8137_118419
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
OK1
RNS
ID FETCH-LOGICAL-c1599-8ef5bc20d1059c96b1d63c683e0b1f84359160c12f86cedfce48dd90cc4c80ec3
ISSN 2277-3878
IngestDate Sat Nov 29 06:09:18 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1599-8ef5bc20d1059c96b1d63c683e0b1f84359160c12f86cedfce48dd90cc4c80ec3
OpenAccessLink https://doi.org/10.35940/ijrte.d8137.118419
PageCount 9
ParticipantIDs crossref_primary_10_35940_ijrte_D8137_118419
PublicationCentury 2000
PublicationDate 2019-11-30
PublicationDateYYYYMMDD 2019-11-30
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-30
  day: 30
PublicationDecade 2010
PublicationTitle International journal of recent technology and engineering
PublicationYear 2019
SSID ssj0001361436
Score 2.0874853
Snippet The exponential demand in usage of internet of Things (IoT) devices, there is a vast effective improvement in commination among different things. Especially in...
SourceID crossref
SourceType Index Database
StartPage 2303
Title Iot based Agriculture Drought Prediction using Chaotic Genetic Algorithm Integrated Intuitionist Fuzzy Subtractive Clustering
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2277-3878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001361436
  issn: 2277-3878
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwgEOiKegPOQDt5CQxHnYx1VLBVKpOBTUW7R-pN1qm62Cs6oqlf_GP2Ns52GgQvTAJYms1SjZ-TQznhl_g9AbLjLOi0SGhFERZrLmIadchEVWLvK8VlLYrsqv--XBAT06Yp9nsx_DWZjNqmwaenHBzv-rqmENlG2Ozt5A3aNQWIBnUDpcQe1w_SfFf1zrwPgmGcyP255ZQwW7dhyPNi0XcunGg3eu5n-yWBvSVsM_be7z1fG6XeqTM5sstEwSpmFYd7a3C0AR7HWXl9biaHvCaqOCnVVn-BYGL3g6dcdPyUaPogKMrOlA0GNW31Yw1MSMOKXJ3RRem7WNAjMFcip5beAlW1etaqNgP_LzFwkbeBMHM5eaIjKhbpBPpK5Z6-009eCY-TaXxMTz3xCwJtf5BpKzzHRTLk9braJdmpAS_AXNeov9CxP3bx5y7FuEHZMVU1khlRVSOSG30O20zJnxDZ--e2k-AvGPHVQ5fpPjvrJy3v35Ml585AU6hw_Q_X6HgucOWQ_RTDWP0D2Pt_IxugKMYYsx7GEM9xjDE8awxRjuMYZ7jOERY3jCGPYxhi3GsIcxPGHsCfqy9_5w50PYz_EIBQTLLKSqzrlIY2liecEKnsiCiIISFfOkphCwwx4lFkla00IoWQuVUSlZLEQmaKwEeYq2mnWjniEM_hXidcJlXi9gqwHi0jRecKZSZbj24ufo7fDvVeeOrqX6i9K2b_bzF-juhOCXaEu3nXqF7oiNXn5rX1vF_wS3YJbY
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iot+based+Agriculture+Drought+Prediction+using+Chaotic+Genetic+Algorithm+Integrated+Intuitionist+Fuzzy+Subtractive+Clustering&rft.jtitle=International+journal+of+recent+technology+and+engineering&rft.au=Margaret%2C+M.+Rose&rft.au=Pavithra%2C+Dr.+L.&rft.date=2019-11-30&rft.issn=2277-3878&rft.eissn=2277-3878&rft.volume=8&rft.issue=4&rft.spage=2303&rft.epage=2311&rft_id=info:doi/10.35940%2Fijrte.D8137.118419&rft.externalDBID=n%2Fa&rft.externalDocID=10_35940_ijrte_D8137_118419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2277-3878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2277-3878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2277-3878&client=summon