Data-driven Security Assessments for Predicting Information Security Maturity Levels

This study investigates the use of machine learning to improve Information Security Risk Assessment (ISRA), with a particular emphasis on the KAMI framework, which is adapted from ISO 27001. It compares the performance of conventional machine learning algorithms, such as Logistic Regression, Random...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of internet services and information security Ročník 15; číslo 2; s. 906 - 925
Hlavní autori: Muhammad, Alva Hendi, Hanafi, Hanafi, Ari Yuana, Kumara, Ghozali, Bahrun, Haris, Ruby
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 30.05.2025
ISSN:2182-2069, 2182-2077
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study investigates the use of machine learning to improve Information Security Risk Assessment (ISRA), with a particular emphasis on the KAMI framework, which is adapted from ISO 27001. It compares the performance of conventional machine learning algorithms, such as Logistic Regression, Random Forest, Decision Tree, and Support Vector Machine, with advanced boosting methods, including CatBoost, Gradient Boosting, LightGBM, and XGBoost. Findings reveal that boosting models outperform traditional classifiers, with CatBoost achieving the highest accuracy (98.45%) and balanced evaluation metrics, demonstrating strong capabilities in managing complex and imbalanced datasets. The integration of machine learning into the KAMI framework effectively addresses key cybersecurity challenges, including the analysis of unstructured data and the expansion of assessment coverage. This research highlights the practical benefits for organizations and technology providers by showing how ML-powered tools can streamline risk assessments, enhance strategic decision-making, and strengthen cybersecurity resilience. By aligning with global standards and utilizing AI, the study contributes to the advancement of efficient and scalable ISRA methodologies, paving the way for future innovation at the intersection of machine learning and cybersecurity
AbstractList This study investigates the use of machine learning to improve Information Security Risk Assessment (ISRA), with a particular emphasis on the KAMI framework, which is adapted from ISO 27001. It compares the performance of conventional machine learning algorithms, such as Logistic Regression, Random Forest, Decision Tree, and Support Vector Machine, with advanced boosting methods, including CatBoost, Gradient Boosting, LightGBM, and XGBoost. Findings reveal that boosting models outperform traditional classifiers, with CatBoost achieving the highest accuracy (98.45%) and balanced evaluation metrics, demonstrating strong capabilities in managing complex and imbalanced datasets. The integration of machine learning into the KAMI framework effectively addresses key cybersecurity challenges, including the analysis of unstructured data and the expansion of assessment coverage. This research highlights the practical benefits for organizations and technology providers by showing how ML-powered tools can streamline risk assessments, enhance strategic decision-making, and strengthen cybersecurity resilience. By aligning with global standards and utilizing AI, the study contributes to the advancement of efficient and scalable ISRA methodologies, paving the way for future innovation at the intersection of machine learning and cybersecurity
Author Hanafi, Hanafi
Ari Yuana, Kumara
Muhammad, Alva Hendi
Ghozali, Bahrun
Haris, Ruby
Author_xml – sequence: 1
  givenname: Alva Hendi
  surname: Muhammad
  fullname: Muhammad, Alva Hendi
– sequence: 2
  givenname: Hanafi
  surname: Hanafi
  fullname: Hanafi, Hanafi
– sequence: 3
  givenname: Kumara
  surname: Ari Yuana
  fullname: Ari Yuana, Kumara
– sequence: 4
  givenname: Bahrun
  surname: Ghozali
  fullname: Ghozali, Bahrun
– sequence: 5
  givenname: Ruby
  surname: Haris
  fullname: Haris, Ruby
BookMark eNpNkN9KwzAYxYNMcM69gFd9gdbkS5O2l2P-WaSi0Hkd0vSLBLZWkjrY21s3EW_OORwO5-J3TWb90CMht4xmouS5vHtWjWoyoCAyBRmV9ILMgZWQAi2K2V-W1RVZxuhbKmjBeZFXc7K9N6NJu-AP2CcN2q_gx2OyihFj3GM_xsQNIXkL2Hk7-v4jUf1U7M3oh3_7FzOeQ40H3MUbcunMLuLy1xfk_fFhu96k9euTWq_q1DJR0Uk57RyXBou2BWCOVY7nHErbiVJyiZ2k3LG8gtyZ1hibC0G5raAtkbFpsSBw_rVhiDGg05_B7004akb1CY0-odE_aLQCPaHh34H4WkY
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.58346/JISIS.2025.I2.060
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2182-2077
EndPage 925
ExternalDocumentID 10_58346_JISIS_2025_I2_060
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
OK1
ID FETCH-LOGICAL-c1590-c130df36ae7bb221f19f34328cd58636ed603f14924fabaac45503c92b8e11863
ISSN 2182-2069
IngestDate Sat Nov 29 07:41:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1590-c130df36ae7bb221f19f34328cd58636ed603f14924fabaac45503c92b8e11863
OpenAccessLink https://doi.org/10.58346/jisis.2025.i2.060
PageCount 20
ParticipantIDs crossref_primary_10_58346_JISIS_2025_I2_060
PublicationCentury 2000
PublicationDate 2025-05-30
PublicationDateYYYYMMDD 2025-05-30
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of internet services and information security
PublicationYear 2025
SSID ssib050733749
ssj0001072582
Score 2.2932274
Snippet This study investigates the use of machine learning to improve Information Security Risk Assessment (ISRA), with a particular emphasis on the KAMI framework,...
SourceID crossref
SourceType Index Database
StartPage 906
Title Data-driven Security Assessments for Predicting Information Security Maturity Levels
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2182-2077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050733749
  issn: 2182-2069
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoEeEE9BeSgHbqssjr2O7eMCBRbRCqmLVE6Rk9jaldq02pcqDvy7_q-OH0lMUSV64GJZljVK9vsyHnv9zSD0VnCqs0yJlNYlhg2KxqlgXKcVLFXjzGoXlXDFJvjhoTg-lt8Hg8tWC7M94U0jLi7k-X-FGsYAbCudvQXcnVEYgD6ADi3ADu0_Af9RrVVaL60XC6fpEGdPugScLv-CvXlRWzGIuy7QCRj7-Qc236ftfLOXilY3hLALd5yo18NV8Dghl1NvcBUM9rjO1empp9XkZGtlUE296N1go4wvo-16PRsXw58bFeRr9lJ4t5h8np_9Ul7i_V7Nl5smPsYgzP0Dj3tvZzPJA46-bstIx2OhzkvrrllESxL5XonzaBmXXk99fYVggrrcyF-nR9OjkX2Q0ZSMsK9p8Gc67mvLZHd5EbZNzkrhbBTWRjElBdi4g-4SzqR1rge_91u3xmxdTB52ue7oD3PCXBmz7qW9nMuZfffXo0UhUxT7zB6iBwHxZOLJ9ggNdPMY7UapLJ-gWUS7pKVREtEuAVIkPe2SiHb9_JZ2iafdU_Tj0_7sw5c0VOyAb5tJDC3FtaG50rwsCclMJo1VLouqZiKnua5zTA1sysnYqFKpymrqaSVJKcBjwIxnaKc5a_RzlGhsIPrHRkmb1I9zaXIFsb3iGTWG0vELNGx_lOLcJ2YpbkZm71azX6L7PUVfoZ31cqNfo3vVdr1YLd84cK8A05-Fxw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+Security+Assessments+for+Predicting+Information+Security+Maturity+Levels&rft.jtitle=Journal+of+internet+services+and+information+security&rft.au=Muhammad%2C+Alva+Hendi&rft.au=Hanafi%2C+Hanafi&rft.au=Ari+Yuana%2C+Kumara&rft.au=Ghozali%2C+Bahrun&rft.date=2025-05-30&rft.issn=2182-2069&rft.eissn=2182-2077&rft.volume=15&rft.issue=2&rft.spage=906&rft.epage=925&rft_id=info:doi/10.58346%2FJISIS.2025.I2.060&rft.externalDBID=n%2Fa&rft.externalDocID=10_58346_JISIS_2025_I2_060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2182-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2182-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2182-2069&client=summon