Generalized Triangular Numbers and Combinatorial Explanations

The formula for the sums of the first integers, which are known as triangular numbers, is well known and there are many proofs for it: by induction, graphical, by combinatorics, etc. The sum of the first triangular numbers is known as tetrahedral numbers. In this article1, we discuss a generalizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Recreational Mathematics Magazine Jg. 12; H. 20; S. 103 - 119
1. Verfasser: Michael Heinrich Baumann
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Lisbon De Gruyter Brill Sp. z o.o., Paradigm Publishing Services 01.06.2025
Schlagworte:
ISSN:2182-1968, 2182-1976
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The formula for the sums of the first integers, which are known as triangular numbers, is well known and there are many proofs for it: by induction, graphical, by combinatorics, etc. The sum of the first triangular numbers is known as tetrahedral numbers. In this article1, we discuss a generalization of triangular and tetrahedral numbers where the number of summation symbols is variable. We repeat results from the literature that state that these so-called generalized triangular numbers can be represented via multicombinations, i.e. combinations with repetitions, and give an illustrative explanation for this formula, which is based on combinatorics. Via high-dimensional illustrations, we show that these generalized triangular numbers are figurate numbers, namely hyper-tetrahedral numbers, see Figure 1. Additionally, we demonstrate that there is a relation between the height and the dimension of these hypertetrahedra, i.e. a series of generalized triangular numbers with fixed dimension and varying height can be represented as such a series with fixed height and varying dimension, and vice versa.
AbstractList The formula for the sums of the first integers, which are known as triangular numbers, is well known and there are many proofs for it: by induction, graphical, by combinatorics, etc. The sum of the first triangular numbers is known as tetrahedral numbers. In this article1, we discuss a generalization of triangular and tetrahedral numbers where the number of summation symbols is variable. We repeat results from the literature that state that these so-called generalized triangular numbers can be represented via multicombinations, i.e. combinations with repetitions, and give an illustrative explanation for this formula, which is based on combinatorics. Via high-dimensional illustrations, we show that these generalized triangular numbers are figurate numbers, namely hyper-tetrahedral numbers, see Figure 1. Additionally, we demonstrate that there is a relation between the height and the dimension of these hypertetrahedra, i.e. a series of generalized triangular numbers with fixed dimension and varying height can be represented as such a series with fixed height and varying dimension, and vice versa.
Author Michael Heinrich Baumann
Author_xml – sequence: 1
  fullname: Michael Heinrich Baumann
BookMark eNo9Ts1LwzAcDTLBOXf0XvAcTX75ag4epMwpDL3M80jaX6TSJjNZQfzrLSie3he89y7JIqaIhFxzdgvS1Hd5HCkwUJQxps_IEngNlFujF_9c1xdkXUrv2WwwoaxdkvstRsxu6L-xq_a5d_F9GlyuXqbRYy6Vi13VpNH30Z3SHA_V5us4uFn1KZYrch7cUHD9hyvy9rjZN09097p9bh52tOWqFhSt1hIk054p6YLxggc06EC1NtS-da4zIYBE6zVnRgV0HYIJypsA81GxIje_vcecPicsp8NHmnKcJw8CQIIQWkrxA9r4TYM
ContentType Journal Article
Copyright 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.2478/rmm-2025-0006
DatabaseName ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2182-1976
EndPage 119
GroupedDBID ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AMVHM
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c1583-e96642406b054af7b31fe7ea25c9f8bcaad7ff24e9b61075feade27f5b7f20353
IEDL.DBID BENPR
ISSN 2182-1968
IngestDate Sun Oct 19 01:38:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1583-e96642406b054af7b31fe7ea25c9f8bcaad7ff24e9b61075feade27f5b7f20353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3224233644?pq-origsite=%requestingapplication%
PQID 3224233644
PQPubID 6771861
PageCount 17
ParticipantIDs proquest_journals_3224233644
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Lisbon
PublicationPlace_xml – name: Lisbon
PublicationTitle Recreational Mathematics Magazine
PublicationYear 2025
Publisher De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Publisher_xml – name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
SSID ssib021803599
ssib058464626
Score 2.2933364
Snippet The formula for the sums of the first integers, which are known as triangular numbers, is well known and there are many proofs for it: by induction, graphical,...
SourceID proquest
SourceType Aggregation Database
StartPage 103
SubjectTerms Combinatorics
Title Generalized Triangular Numbers and Combinatorial Explanations
URI https://www.proquest.com/docview/3224233644
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2182-1976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib058464626
  issn: 2182-1968
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2182-1976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib058464626
  issn: 2182-1968
  databaseCode: PIMPY
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWDhIUA8CsrAGpU4TmwPCAFqBRJEESpSmSrHD6lDU0gKA7-eu8SBAYmFKUOW5PL5vrvL3X2EnEdSRTjxiZO5achkBGcOeD-0ShqRKG2kagaFH3iWielU5r7gVvu2ys4nNo7aLDXWyIcAPGD-GOj76vUtRNUo_LvqJTTWSR83lQHO-zejLH_qEAX8hSvqvgkb2ZaljQYbbi4PAX6iXbxJGRfDarEA1NAER63TX865YZzx9n-fdYds-VgzuG7BsUvWbLlHLv2i6fmnNcEE4FeiGH0VZI00SB2o0gTgJCBhxnQc0Blgm55qi4b1Pnkejya3d6HXUAh1lIg4tJDOMGRteHmmHC_iyFluFU20dKLQShnuHGVWFhBI8cRhAzXlLim4o2C7-ID0ymVpD0mQCuMgPKDUaMGKIlJMXTgtIaZxmhdUHpFBZ42ZPwj17McUx3_fPiGbremxwDEgvVX1bk_Jhv5YzevqzH9XuOb3j_nLF5Z9rRU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEN4QMNGLj6jxgboHPTbQpWW7B2KMSiBAwwETPOHudtdwoChFjf4of6MzfejBxBsHz700M9_M93U6D0LOXSFdnPjEydym4wkXYg543zFSRIEvdSRkOijc52EYjMdiWCKfxSwMtlUWOTFN1NFcY428BsAD5m8AfV8-PTt4NQr_rhYnNDJY9Mz7G3yyJa3uDfj3grH27ei64-RXBRzt-kHDMSDwPeQxBWpFWq4arjXcSOZrYQOlpYy4tcwzQoG04L7FlmLGra-4ZfX0SgSk_IqHYC-TyrA7GN4XCAa-xJV43wIB2d1rpjffcFO6A3APskWfzONBbTGbAUqZj6PdzV9kkDJce-u_2WabbOZaml5l4N8hJRPvkla-SHv6YSI6gvCKH7HTlobp6ZOEyjiikATVNMZyA0QfxTZEmRVFkz1yt5I33ifleB6bA0KbQWRB_jAW6cBTypWerFstQLNZzRUTh6RaWH-SB3oy-TH90d-Pz8h6ZzToT_rdsHdMNjK3YzGnSsrLxYs5IWv6dTlNFqc5pih5WLWrvgDGVQnW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Triangular+Numbers+and+Combinatorial+Explanations&rft.jtitle=Recreational+Mathematics+Magazine&rft.au=Michael+Heinrich+Baumann&rft.date=2025-06-01&rft.pub=De+Gruyter+Brill+Sp.+z+o.o.%2C+Paradigm+Publishing+Services&rft.issn=2182-1968&rft.eissn=2182-1976&rft.volume=12&rft.issue=20&rft.spage=103&rft.epage=119&rft_id=info:doi/10.2478%2Frmm-2025-0006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2182-1968&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2182-1968&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2182-1968&client=summon