Estudo da reologia de hidrogéis compósitos de PEG-Laponita-alginato visando impressão 3D baseada em extrusão
RESUMO Os hidrogéis, redes poliméricas reticuladas capazes de absorver e reter uma grande quantidade de água devido à sua natureza hidrofílica, chamam a atenção para aplicações na Engenharia Tecidual. Ainda, esses materiais oferecem o potencial de projetar arcabouços partindo do seu comportamento ps...
Uloženo v:
| Vydáno v: | Matéria Ročník 27; číslo 2 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | portugalština |
| Vydáno: |
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro; em cooperação com a Associação Brasileira do Hidrogênio, ABH2
2022
|
| Témata: | |
| ISSN: | 1517-7076, 1517-7076 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | RESUMO Os hidrogéis, redes poliméricas reticuladas capazes de absorver e reter uma grande quantidade de água devido à sua natureza hidrofílica, chamam a atenção para aplicações na Engenharia Tecidual. Ainda, esses materiais oferecem o potencial de projetar arcabouços partindo do seu comportamento pseudoplástico, o que é fundamental para impressão tridimensional (3D) baseada em extrusão. A adição de Laponita, um nanosilicato bidimensional em forma de disco, permite modificar o comportamento reológico de alguns géis, criando uma condição otimizada. Neste estudo, foi realizada a caracterização reológica do hidrogel compósito PEG-Laponita-alginato (PL-Alg) e de seu gel precursor PEG-Laponita (PL), visando futuramente a bioimpressão 3D. Inicialmente, foi avaliado o comportamento reológico de diferentes concentrações de Laponita no compósito PL. Verificou-se que a viscosidade da solução de PEG aumentou drasticamente como uma função da adição de Laponita, de modo que se observou um comportamento reológico não-Newtoniano fortemente pseudoplástico. O efeito dos diferentes teores de Laponita também pode ser notado para o compósito (PL-Alg), mantendo-se fixa a concentração de PEG e alginato, sendo este último adicionado com o intuito de ser um segundo precursor de rede para reticular o hidrogel de PEG-Laponita. Ainda, todos os compósitos apresentaram uma recuperação parcial da viscosidade em função do tempo, após a aplicação de cisalhamento, parâmetro a ser considerado no desenvolvimento de biotintas. Os arcabouços de PL-Alg foram impressos contendo até 10 camadas e colocados em uma solução de CaCl2 para a reticulação das cadeias do alginato. Posteriormente, testes in vitro foram realizados, mostrando que a dissolução da rede do hidrogel compósito foi mais crítica para a amostra com 5% de Laponita. Em conclusão, para trabalhos futuros deverá ser considerada a maneira mais apropriada de reticulação da cadeia de PEG, para melhorar as propriedades mecânicas e a resistência à degradação, viabilizando a utilização do sistema PEG-Laponita-alginato para aplicações em bioimpressão 3D.
ABSTRACT Hydrogels, crosslinked polymeric networks capable of absorbing and retaining a large number of water due to their hydrophilic nature, draws attention to Tissue Engineering applications. These materials offer the potential to design scaffolds based on their pseudoplastic behavior, which is essential for extrusion-based three-dimensional (3D) printing. The addition of Laponite, a two-dimensional disk-shaped nanosilicate, allows modifying the rheological behavior of some gels, creating an optimized condition for 3D printing. In this study, the rheological characterization of the composite hydrogel PEG-Laponite-Alginate (PL-Alg) and its precursor gel PEG-Laponite (PL) was carried out, aiming in the future for 3D bioprinting of constructs. Initially, the rheological behavior of different concentrations of Laponite in the PL composite was evaluated. The viscosity of the PEG-400 increased dramatically as a function of the addition of Laponite, characterizing a strong shear-thinning and solid-like rheological behavior, ideal for 3D printing. The effect of different levels of Laponite can also be noted for the composite (PL-Alg), keeping the concentration of PEG400 and alginate fixed, the latter being added as a second network precursor to crosslink the PEG-Laponite hydrogel. Besides, all composites showed a partial recovery of viscosity as a function of time after the application of shear. This rheological parameter must be considered in the development of a bioink. PL-Alg scaffolds containing Laponite were printed containing up to 10 layers and placed in a CaCl2 solution to promote crosslinking of the alginate chains. Subsequently, in vitro tests were performed in phosphate-buffered saline solution, showing that the dissolution of the composite hydrogel network was more critical for the sample with 5% Laponite. In conclusion, for future work, the most appropriate way of crosslinking the PEG chain should be considered to improve the mechanical properties and the resistance to degradation, enabling the use of the PEG-Laponite-Alginate system as a bioink for 3D bioprinting applications. |
|---|---|
| AbstractList | RESUMO Os hidrogéis, redes poliméricas reticuladas capazes de absorver e reter uma grande quantidade de água devido à sua natureza hidrofílica, chamam a atenção para aplicações na Engenharia Tecidual. Ainda, esses materiais oferecem o potencial de projetar arcabouços partindo do seu comportamento pseudoplástico, o que é fundamental para impressão tridimensional (3D) baseada em extrusão. A adição de Laponita, um nanosilicato bidimensional em forma de disco, permite modificar o comportamento reológico de alguns géis, criando uma condição otimizada. Neste estudo, foi realizada a caracterização reológica do hidrogel compósito PEG-Laponita-alginato (PL-Alg) e de seu gel precursor PEG-Laponita (PL), visando futuramente a bioimpressão 3D. Inicialmente, foi avaliado o comportamento reológico de diferentes concentrações de Laponita no compósito PL. Verificou-se que a viscosidade da solução de PEG aumentou drasticamente como uma função da adição de Laponita, de modo que se observou um comportamento reológico não-Newtoniano fortemente pseudoplástico. O efeito dos diferentes teores de Laponita também pode ser notado para o compósito (PL-Alg), mantendo-se fixa a concentração de PEG e alginato, sendo este último adicionado com o intuito de ser um segundo precursor de rede para reticular o hidrogel de PEG-Laponita. Ainda, todos os compósitos apresentaram uma recuperação parcial da viscosidade em função do tempo, após a aplicação de cisalhamento, parâmetro a ser considerado no desenvolvimento de biotintas. Os arcabouços de PL-Alg foram impressos contendo até 10 camadas e colocados em uma solução de CaCl2 para a reticulação das cadeias do alginato. Posteriormente, testes in vitro foram realizados, mostrando que a dissolução da rede do hidrogel compósito foi mais crítica para a amostra com 5% de Laponita. Em conclusão, para trabalhos futuros deverá ser considerada a maneira mais apropriada de reticulação da cadeia de PEG, para melhorar as propriedades mecânicas e a resistência à degradação, viabilizando a utilização do sistema PEG-Laponita-alginato para aplicações em bioimpressão 3D. RESUMO Os hidrogéis, redes poliméricas reticuladas capazes de absorver e reter uma grande quantidade de água devido à sua natureza hidrofílica, chamam a atenção para aplicações na Engenharia Tecidual. Ainda, esses materiais oferecem o potencial de projetar arcabouços partindo do seu comportamento pseudoplástico, o que é fundamental para impressão tridimensional (3D) baseada em extrusão. A adição de Laponita, um nanosilicato bidimensional em forma de disco, permite modificar o comportamento reológico de alguns géis, criando uma condição otimizada. Neste estudo, foi realizada a caracterização reológica do hidrogel compósito PEG-Laponita-alginato (PL-Alg) e de seu gel precursor PEG-Laponita (PL), visando futuramente a bioimpressão 3D. Inicialmente, foi avaliado o comportamento reológico de diferentes concentrações de Laponita no compósito PL. Verificou-se que a viscosidade da solução de PEG aumentou drasticamente como uma função da adição de Laponita, de modo que se observou um comportamento reológico não-Newtoniano fortemente pseudoplástico. O efeito dos diferentes teores de Laponita também pode ser notado para o compósito (PL-Alg), mantendo-se fixa a concentração de PEG e alginato, sendo este último adicionado com o intuito de ser um segundo precursor de rede para reticular o hidrogel de PEG-Laponita. Ainda, todos os compósitos apresentaram uma recuperação parcial da viscosidade em função do tempo, após a aplicação de cisalhamento, parâmetro a ser considerado no desenvolvimento de biotintas. Os arcabouços de PL-Alg foram impressos contendo até 10 camadas e colocados em uma solução de CaCl2 para a reticulação das cadeias do alginato. Posteriormente, testes in vitro foram realizados, mostrando que a dissolução da rede do hidrogel compósito foi mais crítica para a amostra com 5% de Laponita. Em conclusão, para trabalhos futuros deverá ser considerada a maneira mais apropriada de reticulação da cadeia de PEG, para melhorar as propriedades mecânicas e a resistência à degradação, viabilizando a utilização do sistema PEG-Laponita-alginato para aplicações em bioimpressão 3D. ABSTRACT Hydrogels, crosslinked polymeric networks capable of absorbing and retaining a large number of water due to their hydrophilic nature, draws attention to Tissue Engineering applications. These materials offer the potential to design scaffolds based on their pseudoplastic behavior, which is essential for extrusion-based three-dimensional (3D) printing. The addition of Laponite, a two-dimensional disk-shaped nanosilicate, allows modifying the rheological behavior of some gels, creating an optimized condition for 3D printing. In this study, the rheological characterization of the composite hydrogel PEG-Laponite-Alginate (PL-Alg) and its precursor gel PEG-Laponite (PL) was carried out, aiming in the future for 3D bioprinting of constructs. Initially, the rheological behavior of different concentrations of Laponite in the PL composite was evaluated. The viscosity of the PEG-400 increased dramatically as a function of the addition of Laponite, characterizing a strong shear-thinning and solid-like rheological behavior, ideal for 3D printing. The effect of different levels of Laponite can also be noted for the composite (PL-Alg), keeping the concentration of PEG400 and alginate fixed, the latter being added as a second network precursor to crosslink the PEG-Laponite hydrogel. Besides, all composites showed a partial recovery of viscosity as a function of time after the application of shear. This rheological parameter must be considered in the development of a bioink. PL-Alg scaffolds containing Laponite were printed containing up to 10 layers and placed in a CaCl2 solution to promote crosslinking of the alginate chains. Subsequently, in vitro tests were performed in phosphate-buffered saline solution, showing that the dissolution of the composite hydrogel network was more critical for the sample with 5% Laponite. In conclusion, for future work, the most appropriate way of crosslinking the PEG chain should be considered to improve the mechanical properties and the resistance to degradation, enabling the use of the PEG-Laponite-Alginate system as a bioink for 3D bioprinting applications. |
| Author | Rodas, Andrea Cecília Dorion d'Ávila, Marcos Akira Santo, Karina Feliciano Dávila, José Luis Daguano, Juliana Kelmy Macário Barboza Silva, Jorge Vicente Lopes da |
| AuthorAffiliation | Núcleo de Tecnologias Tridimensionais Universidade Estadual de Campinas UFABC |
| AuthorAffiliation_xml | – name: UFABC – name: Núcleo de Tecnologias Tridimensionais – name: Universidade Estadual de Campinas |
| Author_xml | – sequence: 1 givenname: Karina Feliciano orcidid: 0000-0001-5296-1610 surname: Santo fullname: Santo, Karina Feliciano organization: UFABC, Brasil; Núcleo de Tecnologias Tridimensionais, Brasil – sequence: 2 givenname: José Luis orcidid: 0000-0003-0502-5963 surname: Dávila fullname: Dávila, José Luis organization: Núcleo de Tecnologias Tridimensionais, Brasil – sequence: 3 givenname: Marcos Akira orcidid: 0000-0003-1981-9692 surname: d'Ávila fullname: d'Ávila, Marcos Akira organization: UNICAMP, Brasil – sequence: 4 givenname: Andrea Cecília Dorion orcidid: 0000-0001-9920-6882 surname: Rodas fullname: Rodas, Andrea Cecília Dorion organization: UFABC, Brasil – sequence: 5 givenname: Jorge Vicente Lopes da orcidid: 0000-0002-2347-5215 surname: Silva fullname: Silva, Jorge Vicente Lopes da organization: Núcleo de Tecnologias Tridimensionais, Brasil – sequence: 6 givenname: Juliana Kelmy Macário Barboza orcidid: 0000-0001-6098-6826 surname: Daguano fullname: Daguano, Juliana Kelmy Macário Barboza organization: UFABC, Brasil; Núcleo de Tecnologias Tridimensionais, Brasil |
| BookMark | eNplkN9KwzAUxoNMcJs-g3mBzvxpmu5S5pzCQEG9DmmazIy2KTmd6PN45bWPsBezZSID4RzO4Xx834HfBI2a0FiELimZUTEnV0AFlYkkMmOEMUIIm1Eu0xM0_hNGR_sZmgBsCcl4ysgYtUvodmXApcbRhipsvMalxa--jGGz__KATajb_Tf4LsCgPC5XyVq3ofGdTnS18Y3uAn7zoJs-xtdttAD7z4D5DS40WN0n2xrb9y7uhvs5OnW6AnvxO6fo5Xb5vLhL1g-r-8X1OjFUyC4xTjKZEy1zR3lu5joXKeMly42gLkuJsa6YG5YKV2S6zJmWQuR9G0PzgruUT9HskAvG2yqobdjFpn-ongYU6phXX5z1BnkwmBgAonWqjb7W8UNRogbSCv451UCa_wDqKHRy |
| Cites_doi | 10.1039/C7RA13452E 10.1016/j.bprint.2020.e00105 10.1021/acs.biomac.8b00696 10.1007/s00170-018-2876-y 10.1016/j.carbpol.2016.09.057 10.1166/jbn.2018.2559 10.1021/acsomega.0c05466 10.1016/j.matdes.2018.09.040 10.1039/C8BM01286E 10.1002/pat.3514 10.1016/S0168-3659(97)00191-0 10.1088/1758-5090/ab19fd 10.5487/TR.2015.31.2.105 10.1039/C8BM01246F 10.1016/j.colsurfa.2021.126356 10.1088/1758-5090/8/3/032002 10.1021/bm3012924 10.1016/j.colsurfb.2016.03.033 10.1088/1758-5090/aa8dd8 10.1016/j.eurpolymj.2014.11.024 10.1021/acs.langmuir.7b02540 10.1002/anbr.202000097 10.1016/j.biomaterials.2019.119536 10.1002/adfm.201908101 10.1021/la205153b 10.1016/j.nano.2017.04.016 10.1002/term.1688 10.1016/j.ijbiomac.2017.08.184 10.1021/jp808145x 10.3390/polym13234130 10.1039/D0BM01373K 10.1155/2018/9643721 10.1016/j.actbio.2018.02.035 |
| ContentType | Journal Article |
| Copyright | This work is licensed under a Creative Commons Attribution 4.0 International License. |
| Copyright_xml | – notice: This work is licensed under a Creative Commons Attribution 4.0 International License. |
| DBID | AAYXX CITATION GPN |
| DOI | 10.1590/s1517-707620220002.1374 |
| DatabaseName | CrossRef SciELO |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Rheological study of PEG-Laponite-alginate composite hydrogels aiming 3D extrusion-based printing |
| EISSN | 1517-7076 |
| ExternalDocumentID | S1517_70762022000200232 10_1590_s1517_707620220002_1374 |
| GroupedDBID | 123 2WC 5VS AAYXX ABXHO ADBBV ALMA_UNASSIGNED_HOLDINGS APOWU BCNDV C1A CITATION E3Z GROUPED_DOAJ KQ8 M~E OK1 RSC SCD GPN |
| ID | FETCH-LOGICAL-c157t-cf72780a78f138c9a85423d28c51f640cefb9c245fb6ad82a7558755cc18b3f43 |
| ISSN | 1517-7076 |
| IngestDate | Tue Nov 18 23:21:30 EST 2025 Sat Nov 29 03:37:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Keywords | alginate Laponite nanosilicate Compósito rheology Composite nanosilicato Laponita alginato reologia impressão 3D 3D printing |
| Language | Portuguese |
| License | http://creativecommons.org/licenses/by/4.0 This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c157t-cf72780a78f138c9a85423d28c51f640cefb9c245fb6ad82a7558755cc18b3f43 |
| ORCID | 0000-0001-6098-6826 0000-0001-9920-6882 0000-0002-2347-5215 0000-0003-1981-9692 0000-0001-5296-1610 0000-0003-0502-5963 |
| OpenAccessLink | http://dx.doi.org/10.1590/s1517-707620220002.1374 |
| ParticipantIDs | scielo_journals_S1517_70762022000200232 crossref_primary_10_1590_s1517_707620220002_1374 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 20220001 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Matéria |
| PublicationTitleAlternate | Matéria (Rio J.) |
| PublicationYear | 2022 |
| Publisher | Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro; em cooperação com a Associação Brasileira do Hidrogênio, ABH2 |
| Publisher_xml | – name: Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro; em cooperação com a Associação Brasileira do Hidrogênio, ABH2 |
| References | WU D (ref40) 2018; 160 PAXTON N (ref2) 2017; 9 ALDANA A. A (ref23) 2021; 21 TANG L (ref42) 2018; 8 ARAÚJO L. C. P (ref9) 2018; 23 IZA M (ref16) 1998; 52 LIU P (ref31) 2021; 208 TRUONG V (ref12) 2012; 13 TEE H. T (ref11) 2020; 141 TIĞLI R. S (ref22) 2009; 20 ZHAI X (ref10) 2018; 14 DÁVILA J. L (ref34) 2016; 84 OOI H.W (ref21) 2018; 19 XIN S (ref14) 2019; 7 HU W (ref20) 2019; 7 LI J (ref39) 2020; 140 MAGALHÃES I. P (ref3) 2022 CALÓ E (ref15) 2015; 65 PEAK C.W (ref33) 2018; 34 VO R (ref6) 2021; 9 DÁVILA J. L (ref29) 2018; 101 BOM S (ref36) 2022; 615 TOMÁS H (ref30) 2018; 14 KHOEINI R (ref1) 2021; 1 MURUGESAN S (ref13) 2020 LIU X (ref28) 2015; 26 REID B (ref41) 2015; 9 GLUKHOVA S. A (ref24) 2021; 13 ORYAN A (ref18) 2018; 107 KOKOL V (ref35) 2021; 616 KACZMAREK-PAWELSKA A (ref26) 2019 CIDONIO G (ref27) 2019; 11 ZHAI X (ref32) 2018; 5 RODRIGUEZ M. J (ref37) 2018; 71 SANCILIO S (ref25) 2018; 2018 SHAHIN A (ref38) 2012; 28 LÓPEZ S (ref19) 2021; 6 WU Y (ref7) 2009; 113 NAIR B (ref43) 2016; 143 FU Z (ref8) 2021; 13 DÁVILA J. L (ref44) 2017; 157 MATAI I (ref5) 2020; 226 HÖLZL K (ref4) 2016; 8 JANG H (ref17) 2015; 31 TANG, L 2018; 8 JANG, H; SHIN, C.Y; KIM, K 2015; 31 TIĞLI, R. S 2009; 20 FU, Z 2021; 13 TOMÁS, H 2018; 14 DÁVILA, J. L 2016; 84 TEE, H. T 2020; 141 LI, J 2020; 140 MAGALHÃES, I. P; OLIVEIRA, P. M. D; DERNOWSEK, J 2022 MURUGESAN, S; SCHEIBEL, T 2020 ALDANA, A. A; VALENTE, F; DILLEY, R 2021; 21 LÓPEZ, S 2021; 6 MATAI, I 2020; 226 ZHAI, X 2018; 14 BOM, S 2022; 615 RODRIGUEZ, M. J 2018; 71 PAXTON, N 2017; 9 TRUONG, V 2012; 13 CALÓ, E; KHUTORYANSKIY, V.V 2015; 65 REID, B 2015; 9 WU, Y 2009; 113 LIU, X; BHATIA, S. R 2015; 26 LIU, P 2021; 208 IZA, M 1998; 52 HU, W 2019; 7 DÁVILA, J. L; D’ÁVILA, M. A 2018; 101 HÖLZL, K 2016; 8 DÁVILA, J. L; D’ÁVILA, M. A 2017; 157 PEAK, C.W 2018; 34 ARAÚJO, L. C. P; OLIVEIRA, J. M; ARANHA, N 2018; 23 WU, D 2018; 160 KHOEINI, R; NOSRATI, H; AKBARZADEH, A 2021; 1 CIDONIO, G 2019; 11 XIN, S 2019; 7 ORYAN, A 2018; 107 SANCILIO, S 2018; 2018 SHAHIN, A; JOSHI, Y. M 2012; 28 VO, R; HSU, H; JIANG, X 2021; 9 NAIR, B 2016; 143 OOI, H.W 2018; 19 KACZMAREK-PAWELSKA, A 2019 GLUKHOVA, S. A 2021; 13 ZHAI, X 2018; 5 KOKOL, V 2021; 616 |
| References_xml | – volume: 8 start-page: 10794 issue: 20 year: 2018 ident: ref42 article-title: LAPONITE® nanorods regulating degradability, acidic-alkaline microenvironment, apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds publication-title: RSC Advances doi: 10.1039/C7RA13452E – volume: 141 year: 2020 ident: ref11 article-title: Poly(methyl ethylene phosphate) hydrogels: Degradable and cell-repellent alternatives to PEG-hydrogels publication-title: European Polymer Journal – volume: 20 start-page: 699 issue: 3 year: 2009 ident: ref22 article-title: Evaluation of alginate-chitosan semi IPNs as cartilage scaffolds publication-title: Journal of Materials Science: Materials in Medicine – volume: 21 year: 2021 ident: ref23 article-title: Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties publication-title: Bioprinting doi: 10.1016/j.bprint.2020.e00105 – volume: 19 start-page: 3390 issue: 8 year: 2018 ident: ref21 article-title: Thiol–ene alginate hydrogels as versatile bioinks for bioprinting publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b00696 – volume: 101 start-page: 675 issue: 1-4 year: 2018 ident: ref29 article-title: Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-018-2876-y – volume: 140 year: 2020 ident: ref39 article-title: 3D printing of hydrogels: Rational design strategies and emerging biomedical applications publication-title: Materials Science and Engineering: R: Reports – volume: 157 start-page: 1 year: 2017 ident: ref44 article-title: Laponite as a rheology modifier of alginate solutions: Physical gelation and aging evolution publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.09.057 – volume: 23 year: 2018 ident: ref9 article-title: Síntese e caracterização de scaffolds de fibroína publication-title: Revista Matéria – volume: 14 start-page: 662 issue: 4 year: 2018 ident: ref10 article-title: Nanoclay incorporated polyethylene-glycol nanocomposite hydrogels for stimulating in vitro and in vivo osteogenesis publication-title: Journal of biomedical nanotechnology doi: 10.1166/jbn.2018.2559 – volume: 6 start-page: 6163 issue: 9 year: 2021 ident: ref19 article-title: Synthesis and Operating Optimization of the PEG Conjugate via CuAAC in scCO2 publication-title: ACS omega doi: 10.1021/acsomega.0c05466 – volume: 160 start-page: 486 year: 2018 ident: ref40 article-title: 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity publication-title: Materials & Design doi: 10.1016/j.matdes.2018.09.040 – volume: 7 start-page: 1179 issue: 3 year: 2019 ident: ref14 article-title: Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting publication-title: Biomaterials science doi: 10.1039/C8BM01286E – volume: 26 start-page: 874 issue: 7 year: 2015 ident: ref28 article-title: Laponite® and Laponite®-PEO hydrogels with enhanced elasticity in phosphate-buffered saline publication-title: Polymers for Advanced Technologies doi: 10.1002/pat.3514 – volume: 52 start-page: 41 issue: 1-2 year: 1998 ident: ref16 article-title: Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug publication-title: Journal of Controlled Release doi: 10.1016/S0168-3659(97)00191-0 – volume: 11 issue: 3 year: 2019 ident: ref27 article-title: Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks publication-title: Biofabrication doi: 10.1088/1758-5090/ab19fd – volume: 13 issue: 3 year: 2021 ident: ref8 article-title: Printability in extrusion bioprinting publication-title: Biofabrication – volume: 31 start-page: 105 issue: 2 year: 2015 ident: ref17 article-title: Safety evaluation of polyethylene glycol (PEG) compounds for cosmetic use publication-title: Toxicological research doi: 10.5487/TR.2015.31.2.105 – volume: 615 year: 2022 ident: ref36 article-title: On the progress of hydrogel-based 3D printing: Correlating rheological properties with printing behaviour publication-title: International Journal of Pharmaceutics – volume: 7 start-page: 843 issue: 3 year: 2019 ident: ref20 article-title: Advances in crosslinking strategies of biomedical hydrogels publication-title: Biomaterials science doi: 10.1039/C8BM01246F – volume: 616 year: 2021 ident: ref35 article-title: Rheological properties of gelatine hydrogels affected by flow- and horizontally-induced cooling rates during 3D cryo-printing publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2021.126356 – volume: 8 issue: 3 year: 2016 ident: ref4 article-title: Bioink properties before, during and after 3D bioprinting publication-title: Biofabrication doi: 10.1088/1758-5090/8/3/032002 – volume: 13 start-page: 4012 issue: 12 year: 2012 ident: ref12 article-title: Hydrophilic and amphiphilic polyethylene glycol-based hydrogels with tunable degradability prepared by click chemistry publication-title: Biomacromolecules doi: 10.1021/bm3012924 – year: 2022 ident: ref3 article-title: Investigation of the effect of nozzle design on rheological bioprinting properties using computational fluid dynamics publication-title: Revista Matéria – volume: 143 start-page: 423 year: 2016 ident: ref43 article-title: Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2016.03.033 – volume: 9 issue: 4 year: 2017 ident: ref2 article-title: Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability publication-title: Biofabrication doi: 10.1088/1758-5090/aa8dd8 – volume: 65 start-page: 252 year: 2015 ident: ref15 article-title: Biomedical applications of hydrogels: A review of patents and commercial products publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2014.11.024 – volume: 34 start-page: 917 issue: 3 year: 2018 ident: ref33 article-title: Nanoengineered colloidal inks for 3D bioprinting publication-title: Langmuir doi: 10.1021/acs.langmuir.7b02540 – volume: 84 start-page: 1671 issue: 5-8 year: 2016 ident: ref34 article-title: Software to generate 3-D continuous printing paths for the fabrication of tissue engineering scaffolds publication-title: The International Journal of Advanced Manufacturing Technology – volume: 1 issue: 8 year: 2021 ident: ref1 article-title: Natural and Synthetic Bioinks for 3D Bioprinting publication-title: Advanced NanoBiomed Research doi: 10.1002/anbr.202000097 – volume: 226 year: 2020 ident: ref5 article-title: Progress in 3D bioprinting technology for tissue/organ regenerative engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119536 – year: 2020 ident: ref13 article-title: Copolymer/Clay Nanocomposites for Biomedical Applications publication-title: Advanced Functional Materials doi: 10.1002/adfm.201908101 – volume: 5 issue: 3 year: 2018 ident: ref32 article-title: 3D-Bioprinted Osteoblast-Laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo publication-title: Advanced Science – volume-title: Alginate-based hydrogels in regenerative medicine year: 2019 ident: ref26 – volume: 28 start-page: 5826 issue: 13 year: 2012 ident: ref38 article-title: Hyper-aging dynamics of nanoclay suspension publication-title: Langmuir doi: 10.1021/la205153b – volume: 208 year: 2021 ident: ref31 article-title: Spherical metal oxides-LAPONITE® sheets interactions: Microstructure, rheology and thixotropy of composite gels publication-title: Applied Clay Science – volume: 14 start-page: 2407 issue: 7 year: 2018 ident: ref30 article-title: Laponite®: A key nanoplatform for biomedical applications? publication-title: Nanomedicine: Nanotechnology, Biology and Medicine doi: 10.1016/j.nano.2017.04.016 – volume: 9 start-page: 315 issue: 3 year: 2015 ident: ref41 article-title: PEG hydrogel degradation and the role of the surrounding tissue environment publication-title: Journal of Tissue Engineering and Regenerative Medicine doi: 10.1002/term.1688 – volume: 107 start-page: 678 year: 2018 ident: ref18 article-title: Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds publication-title: International journal of biological macromolecules doi: 10.1016/j.ijbiomac.2017.08.184 – volume: 113 start-page: 3512 issue: 11 year: 2009 ident: ref7 article-title: Effect of cross-linking on the diffusion of water, ions, and small molecules in hydrogels publication-title: The Journal of Physical Chemistry B doi: 10.1021/jp808145x – volume: 13 issue: 23 year: 2021 ident: ref24 article-title: Printable Alginate Hydrogels with Embedded Network of Halloysite Nanotubes: Effect of Polymer Cross-Linking on Rheological Properties and Microstructure publication-title: Polymers doi: 10.3390/polym13234130 – volume: 9 start-page: 23 issue: 1 year: 2021 ident: ref6 article-title: Hydrogel facilitated bioelectronic integration publication-title: Biomaterials Science doi: 10.1039/D0BM01373K – volume: 2018 start-page: 1 year: 2018 ident: ref25 article-title: Alginate/hydroxyapatite-based nanocomposite scaffolds for bone tissue engineering improve dental pulp biomineralization and differentiation publication-title: Stem Cells International doi: 10.1155/2018/9643721 – volume: 71 start-page: 379 year: 2018 ident: ref37 article-title: 3D freeform printing of silk fibroin publication-title: Acta biomaterialia doi: 10.1016/j.actbio.2018.02.035 – volume: 2018 start-page: 1 year: 2018 end-page: 13 article-title: Alginate/hydroxyapatite-based nanocomposite scaffolds for bone tissue engineering improve dental pulp biomineralization and differentiation publication-title: Stem Cells International – volume: 9 start-page: 23 issue: 1 year: 2021 end-page: 37 article-title: Hydrogel facilitated bioelectronic integration publication-title: Biomaterials Science – volume: 8 issue: 3 year: 2016 article-title: Bioink properties before, during and after 3D bioprinting publication-title: Biofabrication – volume: 8 start-page: 10794 issue: 20 year: 2018 end-page: 10805 article-title: LAPONITE® nanorods regulating degradability, acidic-alkaline microenvironment, apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds publication-title: RSC Advances – volume: 28 start-page: 5826 issue: 13 year: 2012 end-page: 5833 article-title: Hyper-aging dynamics of nanoclay suspension publication-title: Langmuir – volume: 7 start-page: 1179 issue: 3 year: 2019 end-page: 1187 article-title: Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting publication-title: Biomaterials science – volume: 9 start-page: 315 issue: 3 year: 2015 end-page: 318 article-title: PEG hydrogel degradation and the role of the surrounding tissue environment publication-title: Journal of Tissue Engineering and Regenerative Medicine – year: 2020 article-title: Copolymer/Clay Nanocomposites for Biomedical Applications publication-title: Advanced Functional Materials – volume: 107 start-page: 678 year: 2018 end-page: 688 article-title: Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds publication-title: International journal of biological macromolecules – volume: 101 start-page: 675 issue: 1-4 year: 2018 end-page: 686 article-title: Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing publication-title: The International Journal of Advanced Manufacturing Technology – volume: 14 start-page: 2407 issue: 7 year: 2018 end-page: 2420 article-title: Laponite®: A key nanoplatform for biomedical applications? publication-title: Nanomedicine: Nanotechnology, Biology and Medicine – volume: 157 start-page: 1 year: 2017 end-page: 8 article-title: Laponite as a rheology modifier of alginate solutions: Physical gelation and aging evolution publication-title: Carbohydrate Polymers – volume: 5 issue: 3 year: 2018 article-title: 3D-Bioprinted Osteoblast-Laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo publication-title: Advanced Science – volume: 84 start-page: 1671 issue: 5-8 year: 2016 end-page: 1677 article-title: Software to generate 3-D continuous printing paths for the fabrication of tissue engineering scaffolds publication-title: The International Journal of Advanced Manufacturing Technology – volume: 616 year: 2021 article-title: Rheological properties of gelatine hydrogels affected by flow- and horizontally-induced cooling rates during 3D cryo-printing publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 13 issue: 3 year: 2021 article-title: Printability in extrusion bioprinting publication-title: Biofabrication – volume: 31 start-page: 105 issue: 2 year: 2015 end-page: 136 article-title: Safety evaluation of polyethylene glycol (PEG) compounds for cosmetic use publication-title: Toxicological research – volume: 71 start-page: 379 year: 2018 end-page: 387 article-title: 3D freeform printing of silk fibroin publication-title: Acta biomaterialia – volume: 113 start-page: 3512 issue: 11 year: 2009 end-page: 3520 article-title: Effect of cross-linking on the diffusion of water, ions, and small molecules in hydrogels publication-title: The Journal of Physical Chemistry B – volume: 14 start-page: 662 issue: 4 year: 2018 end-page: 674 article-title: Nanoclay incorporated polyethylene-glycol nanocomposite hydrogels for stimulating in vitro and in vivo osteogenesis publication-title: Journal of biomedical nanotechnology – volume: 65 start-page: 252 year: 2015 end-page: 267 article-title: Biomedical applications of hydrogels: A review of patents and commercial products publication-title: European Polymer Journal – volume: 140 year: 2020 article-title: 3D printing of hydrogels: Rational design strategies and emerging biomedical applications publication-title: Materials Science and Engineering: R: Reports – volume: 7 start-page: 843 issue: 3 year: 2019 end-page: 855 article-title: Advances in crosslinking strategies of biomedical hydrogels publication-title: Biomaterials science – volume: 21 year: 2021 article-title: Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties publication-title: Bioprinting – volume: 23 year: 2018 article-title: Síntese e caracterização de scaffolds de fibroína publication-title: Revista Matéria – volume: 6 start-page: 6163 issue: 9 year: 2021 end-page: 6171 article-title: Synthesis and Operating Optimization of the PEG Conjugate via CuAAC in scCO2 publication-title: ACS omega – volume: 9 issue: 4 year: 2017 article-title: Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability publication-title: Biofabrication – volume: 26 start-page: 874 issue: 7 year: 2015 end-page: 879 article-title: Laponite® and Laponite®-PEO hydrogels with enhanced elasticity in phosphate-buffered saline publication-title: Polymers for Advanced Technologies – volume: 208 year: 2021 article-title: Spherical metal oxides-LAPONITE® sheets interactions: Microstructure, rheology and thixotropy of composite gels publication-title: Applied Clay Science – volume: 143 start-page: 423 year: 2016 end-page: 430 article-title: Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications publication-title: Colloids and Surfaces B: Biointerfaces – volume: 19 start-page: 3390 issue: 8 year: 2018 end-page: 3400 article-title: Thiol–ene alginate hydrogels as versatile bioinks for bioprinting publication-title: Biomacromolecules – year: 2019 publication-title: Alginates – volume: 141 year: 2020 article-title: Poly(methyl ethylene phosphate) hydrogels: Degradable and cell-repellent alternatives to PEG-hydrogels publication-title: European Polymer Journal – volume: 11 issue: 3 year: 2019 article-title: Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks publication-title: Biofabrication – volume: 1 issue: 8 year: 2021 article-title: Natural and Synthetic Bioinks for 3D Bioprinting publication-title: Advanced NanoBiomed Research – volume: 34 start-page: 917 issue: 3 year: 2018 end-page: 925 article-title: Nanoengineered colloidal inks for 3D bioprinting publication-title: Langmuir – volume: 13 issue: 23 year: 2021 article-title: Printable Alginate Hydrogels with Embedded Network of Halloysite Nanotubes: Effect of Polymer Cross-Linking on Rheological Properties and Microstructure publication-title: Polymers – volume: 13 start-page: 4012 issue: 12 year: 2012 end-page: 4021 article-title: Hydrophilic and amphiphilic polyethylene glycol-based hydrogels with tunable degradability prepared by click chemistry publication-title: Biomacromolecules – volume: 160 start-page: 486 year: 2018 end-page: 495 article-title: 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity publication-title: Materials & Design – volume: 615 year: 2022 article-title: On the progress of hydrogel-based 3D printing: Correlating rheological properties with printing behaviour publication-title: International Journal of Pharmaceutics – volume: 226 year: 2020 article-title: Progress in 3D bioprinting technology for tissue/organ regenerative engineering publication-title: Biomaterials – volume: 52 start-page: 41 issue: 1-2 year: 1998 end-page: 51 article-title: Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug publication-title: Journal of Controlled Release – volume: 20 start-page: 699 issue: 3 year: 2009 end-page: 709 article-title: Evaluation of alginate-chitosan semi IPNs as cartilage scaffolds publication-title: Journal of Materials Science: Materials in Medicine – year: 2022 article-title: Investigation of the effect of nozzle design on rheological bioprinting properties using computational fluid dynamics publication-title: Revista Matéria |
| SSID | ssj0063420 |
| Score | 2.1411202 |
| Snippet | RESUMO Os hidrogéis, redes poliméricas reticuladas capazes de absorver e reter uma grande quantidade de água devido à sua natureza hidrofílica, chamam a... |
| SourceID | scielo crossref |
| SourceType | Open Access Repository Index Database |
| SubjectTerms | CONSTRUCTION & BUILDING TECHNOLOGY MATERIALS SCIENCE, MULTIDISCIPLINARY METALLURGY & METALLURGICAL ENGINEERING |
| Title | Estudo da reologia de hidrogéis compósitos de PEG-Laponita-alginato visando impressão 3D baseada em extrusão |
| URI | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762022000200232&lng=en&tlng=en |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1517-7076 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063420 issn: 1517-7076 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1517-7076 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063420 issn: 1517-7076 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWG0gUsEE9RHpUXSCyiQF6OnWWZmcKirSooUneRYzsoIjMZJdNRV_wMK9Z8wvwH38L1I9EUBkEXbKKJ7blOfI_tY-f6XoRehGUhFQm5H6lU-IkKiF-UUeYXYclpCvMTibgJNkFPTtj5eXY6Gv3oz8Ksajqfs8vLbPFfVQ1poGx9dPYa6h6EQgL8BqXDFdQO139S_FR7jG08yb3WRO2tuCe1X2HZNp_sZ_GqM5bk-uZN3EGX7nSJ0-lb_4gvdB_nPq91vAbgpauq43MQV82MxawREDdePPH0_MehFjXzYIBvL_q8Tbp7rP1ijMdAV601s93M0XGL3UE0qMQ7VLXZW2kGUm0khauq5u4jhX1u7-iiGpYA0KxUJ7Oh3DEoEl7l4HPVDnW9b6Q9sWYMN7k3VsLImtTQLJOm7VHp9j2iaHOQhpmVBtS50N6S5kZ263XAITjaOmGQLDAHqPu_65r0LPEqjG30oKsuun-ZOgeDRr2UAlG5EZRvCsq1oBvoZkQhX5uWfpn2TCGNE-M2dKjc2R9Cwdd_eKIr7GlXk6R6kw-d3UV33EIGH1gA3kOjxfI-ur3h3vIBWlgoYslxD0UsFbZQXH-rOqxhuP5uIKhztkIQOwhiB8H11wbHE-zgh9UMW_hB-kP08XB6Nn7nuwgfvggJXfqiBPrMAk5ZGcZMZJwRoPcyYoKEZZoEQpVFJqKElEXKJYs4JQQW2ESIkBVxmcSP0M68mavHCHMVFmXCSVAwIMlKZjQsuCI8LUUmJaN7KOhbLl9YRy75X7S2h17aFs5d9-7yD7-V1KQ3enJ94U_RLX1vd_OeoR1oKPUc7YrVsurafbM1tG_Q8hOp7560 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estudo+da+reologia+de+hidrog%C3%A9is+comp%C3%B3sitos+de+PEG-Laponita-alginato+visando+impress%C3%A3o+3D+baseada+em+extrus%C3%A3o&rft.jtitle=Mate%CC%81ria&rft.au=Santo%2C+Karina+Feliciano&rft.au=D%C3%A1vila%2C+Jos%C3%A9+Luis&rft.au=d%27%C3%81vila%2C+Marcos+Akira&rft.au=Rodas%2C+Andrea+Cec%C3%ADlia+Dorion&rft.date=2022&rft.issn=1517-7076&rft.eissn=1517-7076&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1590%2Fs1517-707620220002.1374&rft.externalDBID=n%2Fa&rft.externalDocID=10_1590_s1517_707620220002_1374 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1517-7076&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1517-7076&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1517-7076&client=summon |