Performance evaluation of highway pavement based on particle swarm optimization

In order to improve the scientific and accurate evaluation of expressway pavement performance, we construct a pavement performance evaluation index system based on the measured data from the Jinan section of the Beijing-Shanghai Highway in 2022. A back propagation (BP) neural network pavement perfor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Shenzhen da xue xue bao. Li gong ban Ročník 41; číslo 5; s. 619 - 625
Hlavní autoři: DUAN Meidong, CHEN Zheng, WANG Lin, WAN Yingying, LIU Zhaohui, ZHAO Quanman
Médium: Journal Article
Jazyk:angličtina
Vydáno: Science Press (China Science Publishing & Media Ltd.) 01.09.2024
Témata:
ISSN:1000-2618
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In order to improve the scientific and accurate evaluation of expressway pavement performance, we construct a pavement performance evaluation index system based on the measured data from the Jinan section of the Beijing-Shanghai Highway in 2022. A back propagation (BP) neural network pavement performance evaluation algorithm based on particle swarm optimization (PSO), referred to as the PSO-BP algorithm, is proposed. The results show that the PSO-BP algorithm achieves the prediction accuracy of 99.7% on the training set and 99.4% on the test set, which is 19.2% and 19.1% higher than that of the traditional BP neural network, respectively. This indicates that using the particle swarm optimization algorithm to optimize the initial weights and thresholds of the BP neural network can improve the prediction ability and accuracy of the model. The prediction results of the PSO-BP algorithm are highly consistent with the actual evaluation, demonstrating good reliability and stability. The PSO-BP algorithm can accurately evaluate and predict the performance grade of highway asphalt pavement, providing an important basis for highway maintenance decision-making.
AbstractList In order to improve the scientific and accurate evaluation of expressway pavement performance, we construct a pavement performance evaluation index system based on the measured data from the Jinan section of the Beijing-Shanghai Highway in 2022. A back propagation (BP) neural network pavement performance evaluation algorithm based on particle swarm optimization (PSO), referred to as the PSO-BP algorithm, is proposed. The results show that the PSO-BP algorithm achieves the prediction accuracy of 99.7% on the training set and 99.4% on the test set, which is 19.2% and 19.1% higher than that of the traditional BP neural network, respectively. This indicates that using the particle swarm optimization algorithm to optimize the initial weights and thresholds of the BP neural network can improve the prediction ability and accuracy of the model. The prediction results of the PSO-BP algorithm are highly consistent with the actual evaluation, demonstrating good reliability and stability. The PSO-BP algorithm can accurately evaluate and predict the performance grade of highway asphalt pavement, providing an important basis for highway maintenance decision-making.
Author WAN Yingying
LIU Zhaohui
CHEN Zheng
WANG Lin
DUAN Meidong
ZHAO Quanman
Author_xml – sequence: 1
  fullname: DUAN Meidong
– sequence: 2
  fullname: CHEN Zheng
– sequence: 3
  fullname: WANG Lin
– sequence: 4
  fullname: WAN Yingying
– sequence: 5
  fullname: LIU Zhaohui
– sequence: 6
  fullname: ZHAO Quanman
BookMark eNotkMlqwzAYhHVIoUnbN-hBL2BXqyUdS-iSEkig7dn81pIoxJaR3YT06RvSnAZm-IZhZmjSpc4j9EhJyRUTT5_r8qOkTJiSESZKIitqJmhKCSEFq6i-RbNh2BEiCBd8ilZrn0PKLXTWY3-A_Q-MMXU4BbyNm-0RTriHg299N-IGBu_wOewhj9HuPR6OkFuc-jG28fcC3qObAPvBP1z1Dn2_vnzN34vl6m0xf14WlkplCtMQyUHxoJpKK2l141kTnA2cqkpQLyFYbaEKgjNGqaLaWs-Mt0oQ2YDnd2jx3-sS7Oo-xxbyqU4Q64uR8qa-jqxVZVVQJFB6PkRaqo1T0mnnmAEjpOR_PbJfRg
ContentType Journal Article
DBID DOA
DOI 10.3724/SP.J.1249.2024.05619
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EndPage 625
ExternalDocumentID oai_doaj_org_article_76c7f70f110245c189d75d8dd29a9455
GroupedDBID -03
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
ID FETCH-LOGICAL-c1579-9b053a73f7b6875c8be2bfdcf317641e5afc8ca6f432211718cce29ec7405bae3
IEDL.DBID DOA
ISSN 1000-2618
IngestDate Fri Oct 03 12:53:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1579-9b053a73f7b6875c8be2bfdcf317641e5afc8ca6f432211718cce29ec7405bae3
OpenAccessLink https://doaj.org/article/76c7f70f110245c189d75d8dd29a9455
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_76c7f70f110245c189d75d8dd29a9455
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Shenzhen da xue xue bao. Li gong ban
PublicationYear 2024
Publisher Science Press (China Science Publishing & Media Ltd.)
Publisher_xml – name: Science Press (China Science Publishing & Media Ltd.)
SSID ssj0040343
Score 2.2852461
Snippet In order to improve the scientific and accurate evaluation of expressway pavement performance, we construct a pavement performance evaluation index system...
SourceID doaj
SourceType Open Website
StartPage 619
SubjectTerms highway
neural network
particle swarm optimization algorithm
pavement maintenance
performance evaluation
road engineering
Title Performance evaluation of highway pavement based on particle swarm optimization
URI https://doaj.org/article/76c7f70f110245c189d75d8dd29a9455
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0yuHAjjg98k4ULXWQmTdMmWao4iMg44IPZlTzBxTzojIp_700bGV25cdtCSXO5OeckN-cidKZpoAaQn0gmHIkne8QYqwnAqytVYEo0G_ov92I4lOOxGv1o9RVrwlp74Hbi-qK0IggaAKYYL2wmlROFk84xpRUvGvdSKtS3mGrXYE7zVFpPKQGNINtLc7lgvP846t31YstlEIeM9yKDVr8M-xtkGWyhzUQJ8WU7lC5a89Nt1E1Jt8DnyRn6Ygc9jFZl_njl041nATe2w_oTz3VjAL7EEZ4chpfz9I948aHrCZ7BGjFJly930fPg5un6lqSOCMRmhVBEGcgZLfIgTAlCw0rjmQnOBmABJc98oYOVVpeBQ55mGeCOtZ4pbwXwMqN9voc609nU7yPsQacBlQnUZoYHAHqfaVE6pjWTpsjLA3QVp6Sat6YXVbShbh5AcKo08Oqv4Bz-x0eO0EaMVFvYdYw6y_rNn6B1-758XdSnTdy_AFHWr5Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+highway+pavement+based+on+particle+swarm+optimization&rft.jtitle=Shenzhen+da+xue+xue+bao.+Li+gong+ban&rft.au=DUAN+Meidong&rft.au=CHEN+Zheng&rft.au=WANG+Lin&rft.au=WAN+Yingying&rft.date=2024-09-01&rft.pub=Science+Press+%28China+Science+Publishing+%26+Media+Ltd.%29&rft.issn=1000-2618&rft.volume=41&rft.issue=5&rft.spage=619&rft.epage=625&rft_id=info:doi/10.3724%2FSP.J.1249.2024.05619&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_76c7f70f110245c189d75d8dd29a9455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-2618&client=summon