Exploring the Stability Region and Designing the Operator Splitting Numerical Algorithm for the Virus Communication in Reaction Diffusion Environment

A computer virus poses significant risks to individual computer systems. To mitigate these risks, various mathematical models have been developed. Several techniques, including the installation of antivirus software and the implementation of preventive measures based on epidemiological studies, can...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Differential equations Ročník 61; číslo 7; s. 1171 - 1195
Hlavní autoři: Aqib Zafar, Shahid Hussain, Xinlong Feng, Sidorov, Denis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.07.2025
Témata:
ISSN:0012-2661, 1608-3083
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A computer virus poses significant risks to individual computer systems. To mitigate these risks, various mathematical models have been developed. Several techniques, including the installation of antivirus software and the implementation of preventive measures based on epidemiological studies, can reduce the impact of virus attacks. This study focuses on the reaction-diffusion computer virus model. A qualitative analysis of the model is conducted, and the positivity of the model is established. Additionally, the boundedness of the model’s solutions is demonstrated. The stability region is determined by analyzing the variational matrix across different parametric spaces for both temporal and diffusive components of the model. It is observed that the stability region expands under the influence of diffusion phenomena. For the numerical investigation of the model, three computational schemes are employed: the forward Euler scheme, the backward Euler operator splitting scheme, and the non-standard finite difference (NSFD) scheme. The NSFD scheme is analyzed in terms of positivity, consistency, and convergence, with positivity being proven using M-matrix theory. A test problem is utilized to obtain numerical solutions, and various parameter values are explored to identify virus-free and virus-endemic equilibrium states. The NSFD scheme is shown to preserve all essential characteristics of the continuous model.
AbstractList A computer virus poses significant risks to individual computer systems. To mitigate these risks, various mathematical models have been developed. Several techniques, including the installation of antivirus software and the implementation of preventive measures based on epidemiological studies, can reduce the impact of virus attacks. This study focuses on the reaction-diffusion computer virus model. A qualitative analysis of the model is conducted, and the positivity of the model is established. Additionally, the boundedness of the model’s solutions is demonstrated. The stability region is determined by analyzing the variational matrix across different parametric spaces for both temporal and diffusive components of the model. It is observed that the stability region expands under the influence of diffusion phenomena. For the numerical investigation of the model, three computational schemes are employed: the forward Euler scheme, the backward Euler operator splitting scheme, and the non-standard finite difference (NSFD) scheme. The NSFD scheme is analyzed in terms of positivity, consistency, and convergence, with positivity being proven using M-matrix theory. A test problem is utilized to obtain numerical solutions, and various parameter values are explored to identify virus-free and virus-endemic equilibrium states. The NSFD scheme is shown to preserve all essential characteristics of the continuous model.
Author Sidorov, Denis
Aqib Zafar
Shahid Hussain
Xinlong Feng
Author_xml – sequence: 1
  surname: Aqib Zafar
  fullname: Aqib Zafar
  email: aqibzafar76@gmail.com
  organization: College of Mathematics and System Sciences, Xinjiang University
– sequence: 2
  surname: Shahid Hussain
  fullname: Shahid Hussain
  email: shahid_math@xju.edu.cn
  organization: College of Mathematics and System Sciences, Xinjiang University
– sequence: 3
  surname: Xinlong Feng
  fullname: Xinlong Feng
  email: fxlmath@xju.edu.cn
  organization: College of Mathematics and System Sciences, Xinjiang University
– sequence: 4
  givenname: Denis
  surname: Sidorov
  fullname: Sidorov, Denis
  email: dsidorov@isem.irk.ru
  organization: Sino-Russian Joint Research Center for Advanced Energy and Power Systems, Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, School of Electrical Engineering and Automation, Harbin Institute of Technology
BookMark eNp9kE1OwzAQhS1UJNrCAdj5AgE7jpN4WbXlR6qoRIFt5Dh26ipxIttB9CDcl5jCConVPM1872n0ZmBiOiMBuMboBmOS3O4QwnGcpjimKAvyDExxivKIoJxMwDSco3C_ADPnDgghlmE6BZ_rj77prDY19HsJd56XutH-CJ9lrTsDuangSjpdm19k20vLfWfhrh9BH9ZPQyutFryBi6Yew_y-hWokAv6m7eDgsmvbwYyID6HajPFcfOuVVmpwQa3Nu7adaaXxl-Bc8cbJq585B69365flQ7TZ3j8uF5tIYJrFUcmSXAhasZyoTImYZqyqWJUqSkshGVMc4TRjmCNKSFJxyVCCJSJljogsWUnmAJ9yhe2cs1IVvdUtt8cCoyL0WvzpdfTEJ4_rQ23SFodusGZ88x_TF6vBfw4
Cites_doi 10.1016/S0167-9473(03)00113-0
10.1016/j.chaos.2020.110127
10.1016/0025-5564(93)90018-6
10.1016/S0375-9601(02)00152-4
10.1016/j.bspc.2019.101584
10.1016/j.physa.2019.122372
10.13001/1081-3810.1374
10.1016/j.rinp.2021.104017
10.1145/262793.262811
10.1016/j.cose.2008.07.006
10.1016/j.nonrwa.2019.04.006
10.1016/0378-4371(77)90001-2
10.3844/jcssp.2005.31.34
10.1016/j.nonrwa.2011.07.048
10.1109/MSPEC.2013.6471059
10.1016/0167-4048(92)90192-T
10.1016/j.physa.2019.02.018
10.1109/TEC.2011.2162093
10.1016/0022-247X(84)90182-3
10.1016/j.cnsns.2012.05.030
10.1016/j.cmpb.2020.105350
10.1016/j.chaos.2011.10.003
10.1016/0022-0396(79)90088-3
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025
DBID AAYXX
CITATION
DOI 10.1134/S0012266125070122
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1608-3083
EndPage 1195
ExternalDocumentID 10_1134_S0012266125070122
GroupedDBID --Z
-Y2
-~X
.86
.VR
04Q
04W
06D
0R~
0VY
1N0
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABEFU
ABFSG
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLLD
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OHT
OVD
P2P
P62
P9R
PADUT
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
~8M
~A9
AAYXX
CITATION
ID FETCH-LOGICAL-c1572-b948cc5d983f7fc2579dd9d6f55bce99fa016791a05334dae9041e03b803eb9b3
IEDL.DBID RSV
ISSN 0012-2661
IngestDate Thu Nov 27 01:02:36 EST 2025
Thu Nov 20 01:12:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords computer virus model
diffusion
positive
bounded
numerical method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1572-b948cc5d983f7fc2579dd9d6f55bce99fa016791a05334dae9041e03b803eb9b3
PageCount 25
ParticipantIDs crossref_primary_10_1134_S0012266125070122
springer_journals_10_1134_S0012266125070122
PublicationCentury 2000
PublicationDate 20250700
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Differential equations
PublicationTitleAbbrev Diff Equat
PublicationYear 2025
Publisher Pleiades Publishing
Publisher_xml – name: Pleiades Publishing
References J.R. Piqueira (2835_CR6) 2008; 27
2835_CR35
2835_CR37
B.K. Mishra (2835_CR3) 2007; 190
R.C. Harwood (2835_CR36) 2011; 25
S. Yadav (2835_CR21) 2021; 24
U. Can (2835_CR14) 2019; 535
D. Kushner (2835_CR5) 2013; 50
N. Ahmed (2835_CR38) 2020; 190
M.A. Khan (2835_CR19) 2019; 50
H. Yuan (2835_CR13) 2008; 206
J.A. Jacquez (2835_CR29) 1993; 117
X. Han (2835_CR8) 2010; 217
B.K. Mishra (2835_CR2) 2007; 187
S. Chinviriyasit (2835_CR32) 2010; 216
N.D. Alikakos (2835_CR33) 1979; 33
V.F. Morales-Delgado (2835_CR17) 2019; 523
J.E. Sol’ıs-P’erez (2835_CR18) 2019; 54
2835_CR24
B.K. Mishra (2835_CR23) 2007; 187
S. Forrest (2835_CR25) 1997; 40
J.R.C. Piqueira (2835_CR7) 2009; 213
Q. Zhu (2835_CR9) 2012; 17
J. Ren (2835_CR10) 2012; 45
J. Ren (2835_CR11) 2012; 13
2835_CR22
J.R.C. Piqueira (2835_CR27) 2005; 1
R.E. Mickens (2835_CR34) 1994
L. Billings (2835_CR1) 2002; 297
J.C. Wierman (2835_CR4) 2004; 45
J. Singh (2835_CR20) 2020; 140
J.C. Wierman (2835_CR12) 2004; 45
J.R.C. Piqueira (2835_CR15) 2009; 213
J.R.C. Piqueira (2835_CR31) 2009; 213
L. Billings (2835_CR28) 2002; 297
G. Adomian (2835_CR16) 1984; 102
J.R. Piqueira (2835_CR26) 2008; 27
I. Oppenheim (2835_CR30) 1977; 88
References_xml – volume: 45
  start-page: 3
  issue: 1
  year: 2004
  ident: 2835_CR12
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(03)00113-0
– volume: 140
  start-page: 110127
  year: 2020
  ident: 2835_CR20
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110127
– volume: 117
  start-page: 77
  issue: 1-2
  year: 1993
  ident: 2835_CR29
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(93)90018-6
– volume: 297
  start-page: 261
  issue: 3-4
  year: 2002
  ident: 2835_CR1
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)00152-4
– volume: 213
  start-page: 355
  issue: 2
  year: 2009
  ident: 2835_CR31
  publication-title: Appl. Math. Comput.
– volume: 54
  start-page: 101584
  year: 2019
  ident: 2835_CR18
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101584
– volume: 535
  start-page: 122372
  year: 2019
  ident: 2835_CR14
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.122372
– volume: 187
  start-page: 929
  issue: 2
  year: 2007
  ident: 2835_CR2
  publication-title: Appl. Math. Comput.
– ident: 2835_CR37
  doi: 10.13001/1081-3810.1374
– volume: 24
  start-page: 104017
  year: 2021
  ident: 2835_CR21
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2021.104017
– volume: 40
  start-page: 88
  issue: 10
  year: 1997
  ident: 2835_CR25
  publication-title: Commun. ACM
  doi: 10.1145/262793.262811
– volume: 213
  start-page: 355
  issue: 2
  year: 2009
  ident: 2835_CR15
  publication-title: Appl. Math. Comput.
– volume: 206
  start-page: 357
  issue: 1
  year: 2008
  ident: 2835_CR13
  publication-title: Appl. Math. Comput.
– volume: 27
  start-page: 355
  issue: 7-8
  year: 2008
  ident: 2835_CR26
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2008.07.006
– volume: 213
  start-page: 355
  issue: 2
  year: 2009
  ident: 2835_CR7
  publication-title: Appl. Math. Comput.
– volume: 50
  start-page: 144
  year: 2019
  ident: 2835_CR19
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2019.04.006
– ident: 2835_CR35
– volume: 190
  start-page: 1207
  issue: 2
  year: 2007
  ident: 2835_CR3
  publication-title: Appl. Math. Comput.
– volume: 88
  start-page: 191
  issue: 2
  year: 1977
  ident: 2835_CR30
  publication-title: Physica A
  doi: 10.1016/0378-4371(77)90001-2
– volume: 1
  start-page: 31
  issue: 1
  year: 2005
  ident: 2835_CR27
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2005.31.34
– volume: 187
  start-page: 929
  issue: 2
  year: 2007
  ident: 2835_CR23
  publication-title: Appl. Math. Comput.
– volume: 13
  start-page: 376
  issue: 1
  year: 2012
  ident: 2835_CR11
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2011.07.048
– volume: 50
  start-page: 48
  issue: 3
  year: 2013
  ident: 2835_CR5
  publication-title: IEEE Spectr.
  doi: 10.1109/MSPEC.2013.6471059
– ident: 2835_CR24
  doi: 10.1016/0167-4048(92)90192-T
– volume-title: Nonstandard Finite Difference Models of Differential Equations
  year: 1994
  ident: 2835_CR34
– volume: 523
  start-page: 48
  year: 2019
  ident: 2835_CR17
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.02.018
– volume: 27
  start-page: 355
  issue: 7-8
  year: 2008
  ident: 2835_CR6
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2008.07.006
– ident: 2835_CR22
– volume: 25
  start-page: 1109
  issue: 4
  year: 2011
  ident: 2835_CR36
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2011.2162093
– volume: 102
  start-page: 420
  issue: 2
  year: 1984
  ident: 2835_CR16
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(84)90182-3
– volume: 17
  start-page: 5117
  issue: 12
  year: 2012
  ident: 2835_CR9
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.05.030
– volume: 216
  start-page: 395
  issue: 2
  year: 2010
  ident: 2835_CR32
  publication-title: Appl. Math. Comput.
– volume: 190
  start-page: 105350
  year: 2020
  ident: 2835_CR38
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105350
– volume: 217
  start-page: 2520
  issue: 6
  year: 2010
  ident: 2835_CR8
  publication-title: Appl. Math. Comput.
– volume: 297
  start-page: 261
  issue: 3-4
  year: 2002
  ident: 2835_CR28
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)00152-4
– volume: 45
  start-page: 3
  issue: 1
  year: 2004
  ident: 2835_CR4
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(03)00113-0
– volume: 45
  start-page: 74
  issue: 1
  year: 2012
  ident: 2835_CR10
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2011.10.003
– volume: 33
  start-page: 201
  issue: 2
  year: 1979
  ident: 2835_CR33
  publication-title: J. Differ. Equat.
  doi: 10.1016/0022-0396(79)90088-3
SSID ssj0009715
Score 2.3406007
Snippet A computer virus poses significant risks to individual computer systems. To mitigate these risks, various mathematical models have been developed. Several...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 1171
SubjectTerms Difference and Functional Equations
Mathematics
Mathematics and Statistics
Numerical Methods
Ordinary Differential Equations
Partial Differential Equations
Title Exploring the Stability Region and Designing the Operator Splitting Numerical Algorithm for the Virus Communication in Reaction Diffusion Environment
URI https://link.springer.com/article/10.1134/S0012266125070122
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1608-3083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009715
  issn: 0012-2661
  databaseCode: RSV
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCD2qpYX-zBgw8CSTZpdo9iWzxolVZLb2GfGtBYmkbwh_h_3d0kLUU96C2Ej01gdnYmme-bAeAE6_sK6cxNIE86gQhdh2FJHU48yhhSGNn2xcObqNfDoxG5L3XcWcV2r0qS9qQu5o4ERtPr-Sac6KAdmctlsKKjHTbe2B8M5512o2psge8YeFnK_HGJxWC0WAm1Aaa7-a9X2wIbZT4JL4sNUAdLMm2A9dtZM9asAeql_2bwtGwyfbYNPmfkO6ihUOecliX7AfvSMJQhTQVsW3ZHBbkbS1uShwOdt1q2NOzlRb1HP__lSS82fX6FOgm28GEyyTO4oD-BSaqXL5QUsJ0olZtfdbAz19rtgMdu5-Hq2ilHNDjcCyPfYSTAnIeCYKQixbX_EyGIaKkwZFwSoqiROWi7W8mvoJK4gSddxLCLJCMM7YJa-pbKPQBJJDFFnoh8ygOGdNiktIWExPqI8EIRNsF5Zat4XHTiiO0XDAribwZogovKUnHplNnv6P0_oQ_Amm-GAFvO7iGoTSe5PAKr_H2aZJNjuxm_AMGM2gc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CupBrQ-szz148EGgySbN7lFsRbFGaWvxFnazGy1oLE0j-EP8v-5ukkpRD3oL4WMSmN2dSeb7ZgAOibofY5W5CWxLyxVe3eJEMiuiNuMcxwSb9sX9th8E5OGB3hU67rRku5clSXNS53NHXK3ptR0dTlTQ9vXlLMy5KmBpHl-n2__qtOuXYwscS8OLUuaPJqaD0XQl1ASYi5V_vdoqLBf5JDrLF0AVZmSyBks3k2as6RpUi_2boqOiyfTxOnxMyHdIQZHKOQ1L9h11pGYoI5YI1DTsjhJyO5SmJI-6Km81bGkUZHm9Rz3_-VEZGz-9IJUEG3h_MMpSNKU_QYNEmc-VFKg5iONM_6pDrS-t3QbcX7R655dWMaLBimzPdyxOXRJFnqAEx34cqf1PhaCiEXsejySlMdMyB-V3I_kVTNK6a8s65qSOJaccb0IleU3kFiDqS8KwLXyHRS7HKmwy1sBCEnVE2J7wanBS-ioc5p04QvMFg93wmwNqcFp6Kiw2Zfo7evtP6ANYuOzdtMP2VXC9A4uOHghs-Lu7UBmPMrkH89HbeJCO9s3C_AQC4Nzr
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLb7NwYMPitum3SZHcV0U11V8LN5K0iRa0Lpst4I_xP9rkra7LOpBvJUyTAozyUw63zcDsEf0e4V15iawKx1fBDWHE8mcmLqMc6wItu2LO62w3SaPj_SmnHOaVWj3qiRZcBpMl6a0f9wVqpxB4ht-r-uZ0KIDeGgex2HSNzODzHX9rjPsuhtWIww8x4iXZc0fVYwGptGqqA02zfl_f-YCzJV5JjopHGMRxmS6BLNXgyat2RIslvs6Q_tl8-mDZfgcgPKQFkU6F7Xo2Q90Kw1yGbFUoIZFfVQi111pS_XoTuezFkWN2nlRB9LrvzxpZf3nV6STYyveSXp5hkZ4KShJtfqCYYEaiVK5-YWHzoYcvBV4aJ7dn5475egGJ3aD0HM49UkcB4ISrEIV63OBCkFFXQUBjyWlihn6g_YHSwUWTNKa78oa5qSGJaccr8JE-pbKNUA0lIRhV4Qei32OdThlrI6FJProcAMRrMNhZbeoW3ToiOzNBvvRNwOsw1FltajcrNnv0ht_kt6F6ZtGM2pdtC83YcYzc4ItrHcLJvq9XG7DVPzeT7LejvXRL_sr5c8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Stability+Region+and+Designing+the+Operator+Splitting+Numerical+Algorithm+for+the+Virus+Communication+in+Reaction+Diffusion+Environment&rft.jtitle=Differential+equations&rft.au=Aqib+Zafar&rft.au=Shahid+Hussain&rft.au=Xinlong+Feng&rft.au=Sidorov%2C+Denis&rft.date=2025-07-01&rft.pub=Pleiades+Publishing&rft.issn=0012-2661&rft.eissn=1608-3083&rft.volume=61&rft.issue=7&rft.spage=1171&rft.epage=1195&rft_id=info:doi/10.1134%2FS0012266125070122&rft.externalDocID=10_1134_S0012266125070122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-2661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-2661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-2661&client=summon