Exploring the Stability Region and Designing the Operator Splitting Numerical Algorithm for the Virus Communication in Reaction Diffusion Environment
A computer virus poses significant risks to individual computer systems. To mitigate these risks, various mathematical models have been developed. Several techniques, including the installation of antivirus software and the implementation of preventive measures based on epidemiological studies, can...
Uloženo v:
| Vydáno v: | Differential equations Ročník 61; číslo 7; s. 1171 - 1195 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.07.2025
|
| Témata: | |
| ISSN: | 0012-2661, 1608-3083 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A computer virus poses significant risks to individual computer systems. To mitigate these risks, various mathematical models have been developed. Several techniques, including the installation of antivirus software and the implementation of preventive measures based on epidemiological studies, can reduce the impact of virus attacks. This study focuses on the reaction-diffusion computer virus model. A qualitative analysis of the model is conducted, and the positivity of the model is established. Additionally, the boundedness of the model’s solutions is demonstrated. The stability region is determined by analyzing the variational matrix across different parametric spaces for both temporal and diffusive components of the model. It is observed that the stability region expands under the influence of diffusion phenomena. For the numerical investigation of the model, three computational schemes are employed: the forward Euler scheme, the backward Euler operator splitting scheme, and the non-standard finite difference (NSFD) scheme. The NSFD scheme is analyzed in terms of positivity, consistency, and convergence, with positivity being proven using M-matrix theory. A test problem is utilized to obtain numerical solutions, and various parameter values are explored to identify virus-free and virus-endemic equilibrium states. The NSFD scheme is shown to preserve all essential characteristics of the continuous model. |
|---|---|
| AbstractList | A computer virus poses significant risks to individual computer systems. To mitigate these risks, various mathematical models have been developed. Several techniques, including the installation of antivirus software and the implementation of preventive measures based on epidemiological studies, can reduce the impact of virus attacks. This study focuses on the reaction-diffusion computer virus model. A qualitative analysis of the model is conducted, and the positivity of the model is established. Additionally, the boundedness of the model’s solutions is demonstrated. The stability region is determined by analyzing the variational matrix across different parametric spaces for both temporal and diffusive components of the model. It is observed that the stability region expands under the influence of diffusion phenomena. For the numerical investigation of the model, three computational schemes are employed: the forward Euler scheme, the backward Euler operator splitting scheme, and the non-standard finite difference (NSFD) scheme. The NSFD scheme is analyzed in terms of positivity, consistency, and convergence, with positivity being proven using M-matrix theory. A test problem is utilized to obtain numerical solutions, and various parameter values are explored to identify virus-free and virus-endemic equilibrium states. The NSFD scheme is shown to preserve all essential characteristics of the continuous model. |
| Author | Sidorov, Denis Aqib Zafar Shahid Hussain Xinlong Feng |
| Author_xml | – sequence: 1 surname: Aqib Zafar fullname: Aqib Zafar email: aqibzafar76@gmail.com organization: College of Mathematics and System Sciences, Xinjiang University – sequence: 2 surname: Shahid Hussain fullname: Shahid Hussain email: shahid_math@xju.edu.cn organization: College of Mathematics and System Sciences, Xinjiang University – sequence: 3 surname: Xinlong Feng fullname: Xinlong Feng email: fxlmath@xju.edu.cn organization: College of Mathematics and System Sciences, Xinjiang University – sequence: 4 givenname: Denis surname: Sidorov fullname: Sidorov, Denis email: dsidorov@isem.irk.ru organization: Sino-Russian Joint Research Center for Advanced Energy and Power Systems, Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, School of Electrical Engineering and Automation, Harbin Institute of Technology |
| BookMark | eNp9kE1OwzAQhS1UJNrCAdj5AgE7jpN4WbXlR6qoRIFt5Dh26ipxIttB9CDcl5jCConVPM1872n0ZmBiOiMBuMboBmOS3O4QwnGcpjimKAvyDExxivKIoJxMwDSco3C_ADPnDgghlmE6BZ_rj77prDY19HsJd56XutH-CJ9lrTsDuangSjpdm19k20vLfWfhrh9BH9ZPQyutFryBi6Yew_y-hWokAv6m7eDgsmvbwYyID6HajPFcfOuVVmpwQa3Nu7adaaXxl-Bc8cbJq585B69365flQ7TZ3j8uF5tIYJrFUcmSXAhasZyoTImYZqyqWJUqSkshGVMc4TRjmCNKSFJxyVCCJSJljogsWUnmAJ9yhe2cs1IVvdUtt8cCoyL0WvzpdfTEJ4_rQ23SFodusGZ88x_TF6vBfw4 |
| Cites_doi | 10.1016/S0167-9473(03)00113-0 10.1016/j.chaos.2020.110127 10.1016/0025-5564(93)90018-6 10.1016/S0375-9601(02)00152-4 10.1016/j.bspc.2019.101584 10.1016/j.physa.2019.122372 10.13001/1081-3810.1374 10.1016/j.rinp.2021.104017 10.1145/262793.262811 10.1016/j.cose.2008.07.006 10.1016/j.nonrwa.2019.04.006 10.1016/0378-4371(77)90001-2 10.3844/jcssp.2005.31.34 10.1016/j.nonrwa.2011.07.048 10.1109/MSPEC.2013.6471059 10.1016/0167-4048(92)90192-T 10.1016/j.physa.2019.02.018 10.1109/TEC.2011.2162093 10.1016/0022-247X(84)90182-3 10.1016/j.cnsns.2012.05.030 10.1016/j.cmpb.2020.105350 10.1016/j.chaos.2011.10.003 10.1016/0022-0396(79)90088-3 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2025 |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1134/S0012266125070122 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1608-3083 |
| EndPage | 1195 |
| ExternalDocumentID | 10_1134_S0012266125070122 |
| GroupedDBID | --Z -Y2 -~X .86 .VR 04Q 04W 06D 0R~ 0VY 1N0 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 408 409 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDBE ABDBF ABDZT ABECU ABEFU ABFSG ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLLD ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFFHD AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAK LLZTM M0C M2O M2P M4Y M7S MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OHT OVD P2P P62 P9R PADUT PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR ~8M ~A9 AAYXX CITATION |
| ID | FETCH-LOGICAL-c1572-b948cc5d983f7fc2579dd9d6f55bce99fa016791a05334dae9041e03b803eb9b3 |
| IEDL.DBID | RSV |
| ISSN | 0012-2661 |
| IngestDate | Thu Nov 27 01:02:36 EST 2025 Thu Nov 20 01:12:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | computer virus model diffusion positive bounded numerical method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1572-b948cc5d983f7fc2579dd9d6f55bce99fa016791a05334dae9041e03b803eb9b3 |
| PageCount | 25 |
| ParticipantIDs | crossref_primary_10_1134_S0012266125070122 springer_journals_10_1134_S0012266125070122 |
| PublicationCentury | 2000 |
| PublicationDate | 20250700 2025-07-00 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow |
| PublicationTitle | Differential equations |
| PublicationTitleAbbrev | Diff Equat |
| PublicationYear | 2025 |
| Publisher | Pleiades Publishing |
| Publisher_xml | – name: Pleiades Publishing |
| References | J.R. Piqueira (2835_CR6) 2008; 27 2835_CR35 2835_CR37 B.K. Mishra (2835_CR3) 2007; 190 R.C. Harwood (2835_CR36) 2011; 25 S. Yadav (2835_CR21) 2021; 24 U. Can (2835_CR14) 2019; 535 D. Kushner (2835_CR5) 2013; 50 N. Ahmed (2835_CR38) 2020; 190 M.A. Khan (2835_CR19) 2019; 50 H. Yuan (2835_CR13) 2008; 206 J.A. Jacquez (2835_CR29) 1993; 117 X. Han (2835_CR8) 2010; 217 B.K. Mishra (2835_CR2) 2007; 187 S. Chinviriyasit (2835_CR32) 2010; 216 N.D. Alikakos (2835_CR33) 1979; 33 V.F. Morales-Delgado (2835_CR17) 2019; 523 J.E. Sol’ıs-P’erez (2835_CR18) 2019; 54 2835_CR24 B.K. Mishra (2835_CR23) 2007; 187 S. Forrest (2835_CR25) 1997; 40 J.R.C. Piqueira (2835_CR7) 2009; 213 Q. Zhu (2835_CR9) 2012; 17 J. Ren (2835_CR10) 2012; 45 J. Ren (2835_CR11) 2012; 13 2835_CR22 J.R.C. Piqueira (2835_CR27) 2005; 1 R.E. Mickens (2835_CR34) 1994 L. Billings (2835_CR1) 2002; 297 J.C. Wierman (2835_CR4) 2004; 45 J. Singh (2835_CR20) 2020; 140 J.C. Wierman (2835_CR12) 2004; 45 J.R.C. Piqueira (2835_CR15) 2009; 213 J.R.C. Piqueira (2835_CR31) 2009; 213 L. Billings (2835_CR28) 2002; 297 G. Adomian (2835_CR16) 1984; 102 J.R. Piqueira (2835_CR26) 2008; 27 I. Oppenheim (2835_CR30) 1977; 88 |
| References_xml | – volume: 45 start-page: 3 issue: 1 year: 2004 ident: 2835_CR12 publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(03)00113-0 – volume: 140 start-page: 110127 year: 2020 ident: 2835_CR20 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110127 – volume: 117 start-page: 77 issue: 1-2 year: 1993 ident: 2835_CR29 publication-title: Math. Biosci. doi: 10.1016/0025-5564(93)90018-6 – volume: 297 start-page: 261 issue: 3-4 year: 2002 ident: 2835_CR1 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(02)00152-4 – volume: 213 start-page: 355 issue: 2 year: 2009 ident: 2835_CR31 publication-title: Appl. Math. Comput. – volume: 54 start-page: 101584 year: 2019 ident: 2835_CR18 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101584 – volume: 535 start-page: 122372 year: 2019 ident: 2835_CR14 publication-title: Physica A doi: 10.1016/j.physa.2019.122372 – volume: 187 start-page: 929 issue: 2 year: 2007 ident: 2835_CR2 publication-title: Appl. Math. Comput. – ident: 2835_CR37 doi: 10.13001/1081-3810.1374 – volume: 24 start-page: 104017 year: 2021 ident: 2835_CR21 publication-title: Results Phys. doi: 10.1016/j.rinp.2021.104017 – volume: 40 start-page: 88 issue: 10 year: 1997 ident: 2835_CR25 publication-title: Commun. ACM doi: 10.1145/262793.262811 – volume: 213 start-page: 355 issue: 2 year: 2009 ident: 2835_CR15 publication-title: Appl. Math. Comput. – volume: 206 start-page: 357 issue: 1 year: 2008 ident: 2835_CR13 publication-title: Appl. Math. Comput. – volume: 27 start-page: 355 issue: 7-8 year: 2008 ident: 2835_CR26 publication-title: Comput. Secur. doi: 10.1016/j.cose.2008.07.006 – volume: 213 start-page: 355 issue: 2 year: 2009 ident: 2835_CR7 publication-title: Appl. Math. Comput. – volume: 50 start-page: 144 year: 2019 ident: 2835_CR19 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2019.04.006 – ident: 2835_CR35 – volume: 190 start-page: 1207 issue: 2 year: 2007 ident: 2835_CR3 publication-title: Appl. Math. Comput. – volume: 88 start-page: 191 issue: 2 year: 1977 ident: 2835_CR30 publication-title: Physica A doi: 10.1016/0378-4371(77)90001-2 – volume: 1 start-page: 31 issue: 1 year: 2005 ident: 2835_CR27 publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2005.31.34 – volume: 187 start-page: 929 issue: 2 year: 2007 ident: 2835_CR23 publication-title: Appl. Math. Comput. – volume: 13 start-page: 376 issue: 1 year: 2012 ident: 2835_CR11 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2011.07.048 – volume: 50 start-page: 48 issue: 3 year: 2013 ident: 2835_CR5 publication-title: IEEE Spectr. doi: 10.1109/MSPEC.2013.6471059 – ident: 2835_CR24 doi: 10.1016/0167-4048(92)90192-T – volume-title: Nonstandard Finite Difference Models of Differential Equations year: 1994 ident: 2835_CR34 – volume: 523 start-page: 48 year: 2019 ident: 2835_CR17 publication-title: Physica A doi: 10.1016/j.physa.2019.02.018 – volume: 27 start-page: 355 issue: 7-8 year: 2008 ident: 2835_CR6 publication-title: Comput. Secur. doi: 10.1016/j.cose.2008.07.006 – ident: 2835_CR22 – volume: 25 start-page: 1109 issue: 4 year: 2011 ident: 2835_CR36 publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2011.2162093 – volume: 102 start-page: 420 issue: 2 year: 1984 ident: 2835_CR16 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(84)90182-3 – volume: 17 start-page: 5117 issue: 12 year: 2012 ident: 2835_CR9 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.05.030 – volume: 216 start-page: 395 issue: 2 year: 2010 ident: 2835_CR32 publication-title: Appl. Math. Comput. – volume: 190 start-page: 105350 year: 2020 ident: 2835_CR38 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105350 – volume: 217 start-page: 2520 issue: 6 year: 2010 ident: 2835_CR8 publication-title: Appl. Math. Comput. – volume: 297 start-page: 261 issue: 3-4 year: 2002 ident: 2835_CR28 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(02)00152-4 – volume: 45 start-page: 3 issue: 1 year: 2004 ident: 2835_CR4 publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(03)00113-0 – volume: 45 start-page: 74 issue: 1 year: 2012 ident: 2835_CR10 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2011.10.003 – volume: 33 start-page: 201 issue: 2 year: 1979 ident: 2835_CR33 publication-title: J. Differ. Equat. doi: 10.1016/0022-0396(79)90088-3 |
| SSID | ssj0009715 |
| Score | 2.3406007 |
| Snippet | A computer virus poses significant risks to individual computer systems. To mitigate these risks, various mathematical models have been developed. Several... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| StartPage | 1171 |
| SubjectTerms | Difference and Functional Equations Mathematics Mathematics and Statistics Numerical Methods Ordinary Differential Equations Partial Differential Equations |
| Title | Exploring the Stability Region and Designing the Operator Splitting Numerical Algorithm for the Virus Communication in Reaction Diffusion Environment |
| URI | https://link.springer.com/article/10.1134/S0012266125070122 |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1608-3083 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009715 issn: 0012-2661 databaseCode: RSV dateStart: 20000101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCD2qpYX-zBgw8CSTZpdo9iWzxolVZLb2GfGtBYmkbwh_h_3d0kLUU96C2Ej01gdnYmme-bAeAE6_sK6cxNIE86gQhdh2FJHU48yhhSGNn2xcObqNfDoxG5L3XcWcV2r0qS9qQu5o4ERtPr-Sac6KAdmctlsKKjHTbe2B8M5512o2psge8YeFnK_HGJxWC0WAm1Aaa7-a9X2wIbZT4JL4sNUAdLMm2A9dtZM9asAeql_2bwtGwyfbYNPmfkO6ihUOecliX7AfvSMJQhTQVsW3ZHBbkbS1uShwOdt1q2NOzlRb1HP__lSS82fX6FOgm28GEyyTO4oD-BSaqXL5QUsJ0olZtfdbAz19rtgMdu5-Hq2ilHNDjcCyPfYSTAnIeCYKQixbX_EyGIaKkwZFwSoqiROWi7W8mvoJK4gSddxLCLJCMM7YJa-pbKPQBJJDFFnoh8ygOGdNiktIWExPqI8EIRNsF5Zat4XHTiiO0XDAribwZogovKUnHplNnv6P0_oQ_Amm-GAFvO7iGoTSe5PAKr_H2aZJNjuxm_AMGM2gc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CupBrQ-szz148EGgySbN7lFsRbFGaWvxFnazGy1oLE0j-EP8v-5ukkpRD3oL4WMSmN2dSeb7ZgAOibofY5W5CWxLyxVe3eJEMiuiNuMcxwSb9sX9th8E5OGB3hU67rRku5clSXNS53NHXK3ptR0dTlTQ9vXlLMy5KmBpHl-n2__qtOuXYwscS8OLUuaPJqaD0XQl1ASYi5V_vdoqLBf5JDrLF0AVZmSyBks3k2as6RpUi_2boqOiyfTxOnxMyHdIQZHKOQ1L9h11pGYoI5YI1DTsjhJyO5SmJI-6Km81bGkUZHm9Rz3_-VEZGz-9IJUEG3h_MMpSNKU_QYNEmc-VFKg5iONM_6pDrS-t3QbcX7R655dWMaLBimzPdyxOXRJFnqAEx34cqf1PhaCiEXsejySlMdMyB-V3I_kVTNK6a8s65qSOJaccb0IleU3kFiDqS8KwLXyHRS7HKmwy1sBCEnVE2J7wanBS-ioc5p04QvMFg93wmwNqcFp6Kiw2Zfo7evtP6ANYuOzdtMP2VXC9A4uOHghs-Lu7UBmPMrkH89HbeJCO9s3C_AQC4Nzr |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLb7NwYMPitum3SZHcV0U11V8LN5K0iRa0Lpst4I_xP9rkra7LOpBvJUyTAozyUw63zcDsEf0e4V15iawKx1fBDWHE8mcmLqMc6wItu2LO62w3SaPj_SmnHOaVWj3qiRZcBpMl6a0f9wVqpxB4ht-r-uZ0KIDeGgex2HSNzODzHX9rjPsuhtWIww8x4iXZc0fVYwGptGqqA02zfl_f-YCzJV5JjopHGMRxmS6BLNXgyat2RIslvs6Q_tl8-mDZfgcgPKQFkU6F7Xo2Q90Kw1yGbFUoIZFfVQi111pS_XoTuezFkWN2nlRB9LrvzxpZf3nV6STYyveSXp5hkZ4KShJtfqCYYEaiVK5-YWHzoYcvBV4aJ7dn5475egGJ3aD0HM49UkcB4ISrEIV63OBCkFFXQUBjyWlihn6g_YHSwUWTNKa78oa5qSGJaccr8JE-pbKNUA0lIRhV4Qei32OdThlrI6FJProcAMRrMNhZbeoW3ToiOzNBvvRNwOsw1FltajcrNnv0ht_kt6F6ZtGM2pdtC83YcYzc4ItrHcLJvq9XG7DVPzeT7LejvXRL_sr5c8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Stability+Region+and+Designing+the+Operator+Splitting+Numerical+Algorithm+for+the+Virus+Communication+in+Reaction+Diffusion+Environment&rft.jtitle=Differential+equations&rft.au=Aqib+Zafar&rft.au=Shahid+Hussain&rft.au=Xinlong+Feng&rft.au=Sidorov%2C+Denis&rft.date=2025-07-01&rft.pub=Pleiades+Publishing&rft.issn=0012-2661&rft.eissn=1608-3083&rft.volume=61&rft.issue=7&rft.spage=1171&rft.epage=1195&rft_id=info:doi/10.1134%2FS0012266125070122&rft.externalDocID=10_1134_S0012266125070122 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-2661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-2661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-2661&client=summon |