DEVELOPMENT OF AN ALGORITHM FOR OPTIMIZING NEURAL NETWORK TRAINING WHEN DETERMINING THE NUMBER OF NEURONS IN A HIDDEN LAYER IN ORDER TO INCREASE THE PROBABILITY OF RECOGNIZING IMAGES OF A GROUND TARGET
Background. High accuracy of recognition of typical ground objects by optoelectronic tracking systems can be achieved by optimizing the parameters of an artificial neural network (INS) such as: the dimension and structure of the INS input signal, synapses of network neurons, the number of neurons of...
Uložené v:
| Vydané v: | Надежность и качество сложных систем číslo 4 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Penza State University Publishing House
01.02.2022
|
| Predmet: | |
| ISSN: | 2307-4205 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background. High accuracy of recognition of typical ground objects by optoelectronic tracking systems can be achieved by optimizing the parameters of an artificial neural network (INS) such as: the dimension and structure of the INS input signal, synapses of network neurons, the number of neurons of each network layer and the number of network layers. Materials and methods. The existing algorithms for optimizing the training of the INS are considered when determining the number of neurons in the input, hidden and output layers of the INS in order to increase the probability of recognizing images of a ground target. The factors of improving the training of the INS, determining the number of neurons in the hidden layer for recognizing images of ground objects in such algorithms as the Levenberg – Marquardt algorithm, the Bayesian regularization algorithm, the scalable conjugate gradient algorithm and the developed algorithm are investigated. Results and conclusions. The possibility of using the developed algorithm in the subsystem of information and missile control during television homing on the target is investigated. The software implementation of the developed algorithm using the Matlab programming language is carried out. |
|---|---|
| AbstractList | Background. High accuracy of recognition of typical ground objects by optoelectronic tracking systems can be achieved by optimizing the parameters of an artificial neural network (INS) such as: the dimension and structure of the INS input signal, synapses of network neurons, the number of neurons of each network layer and the number of network layers. Materials and methods. The existing algorithms for optimizing the training of the INS are considered when determining the number of neurons in the input, hidden and output layers of the INS in order to increase the probability of recognizing images of a ground target. The factors of improving the training of the INS, determining the number of neurons in the hidden layer for recognizing images of ground objects in such algorithms as the Levenberg – Marquardt algorithm, the Bayesian regularization algorithm, the scalable conjugate gradient algorithm and the developed algorithm are investigated. Results and conclusions. The possibility of using the developed algorithm in the subsystem of information and missile control during television homing on the target is investigated. The software implementation of the developed algorithm using the Matlab programming language is carried out. |
| Author | Godunov, A.I. Shishkov, S.V. Al' Saftli, F.Kh Balanyan, S.T. |
| Author_xml | – sequence: 1 givenname: A.I. surname: Godunov fullname: Godunov, A.I. – sequence: 2 givenname: S.V. surname: Shishkov fullname: Shishkov, S.V. – sequence: 3 givenname: S.T. surname: Balanyan fullname: Balanyan, S.T. – sequence: 4 givenname: F.Kh surname: Al' Saftli fullname: Al' Saftli, F.Kh |
| BookMark | eNo9kU1u2zAQRrVIgaRpbtAFL6CWQ1I_XtIWLRGVSIOmG6QbgqKkwkEaFVI3PWJvVckOsprBm5mHAb6P0c3r-NpH0WfAXwikefKVUJzFjOAkJphAzGIgN9HdO72NHub5GWNMNkAIxnfRv0J8F7U-NEJZpPeIK8TrUhtpqwbttUH6YGUjf0hVIiVOhtdLsY_afEPWcKlW_lgJhQphhWmuwFYCqVOzFWZVrmdaHZFc1KiSRbFs1_xpGS5Em2JprF76nRH8KC7HB6O3fCtraZ9WgxE7XarrE7LhpTheXkWl0SdVIMtNKeyn6MPgX-b-4a3eR6e9sLsqrnUpd7yOAyQZibNNSCjtaQvd0BLPWhY2hAwBQ9YC-IQwnAC0DAfaAwDrQ7rpWJIBST10C72P5NXbjf7Z_Z7Ov_z0143-7C5gnH46P_05h5feUUgZ0CSnPh9Y1gXfAqOe5CHv8pCldHGxqytM4zxP_fDuA-wuibo1O7dm59ZEHXNA6H-QsoZT |
| ContentType | Journal Article |
| CorporateAuthor | Penza State University Branch of the Military Academy of Logistics named after Army General A.V. Khrulev in Penza Air Force Academy named after Professor N. E. Zhukovsky and Yu. A. Gagarin |
| CorporateAuthor_xml | – name: Air Force Academy named after Professor N. E. Zhukovsky and Yu. A. Gagarin – name: Penza State University – name: Branch of the Military Academy of Logistics named after Army General A.V. Khrulev in Penza |
| DBID | AAYXX CITATION DOA |
| DOI | 10.21685/2307-4205-2021-4-12 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| ExternalDocumentID | oai_doaj_org_article_316413583a8f47dcab143a28c8d8c763 10_21685_2307_4205_2021_4_12 |
| GroupedDBID | 642 AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c1572-79c533e3b1dfb2a4b4c922fc017b11a5240511b40c3e1114ec69d457126a1d0c3 |
| IEDL.DBID | DOA |
| ISSN | 2307-4205 |
| IngestDate | Fri Oct 03 12:50:32 EDT 2025 Sat Nov 29 06:31:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1572-79c533e3b1dfb2a4b4c922fc017b11a5240511b40c3e1114ec69d457126a1d0c3 |
| OpenAccessLink | https://doaj.org/article/316413583a8f47dcab143a28c8d8c763 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_316413583a8f47dcab143a28c8d8c763 crossref_primary_10_21685_2307_4205_2021_4_12 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Надежность и качество сложных систем |
| PublicationYear | 2022 |
| Publisher | Penza State University Publishing House |
| Publisher_xml | – name: Penza State University Publishing House |
| SSID | ssj0002912200 |
| Score | 2.1710622 |
| Snippet | Background. High accuracy of recognition of typical ground objects by optoelectronic tracking systems can be achieved by optimizing the parameters of an... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | bayesian regularization algorithm goal hidden layer levenberg – marquardt algorithm neural network neural network training optimization probability recognition scalable conjugate gradient algorithm |
| Title | DEVELOPMENT OF AN ALGORITHM FOR OPTIMIZING NEURAL NETWORK TRAINING WHEN DETERMINING THE NUMBER OF NEURONS IN A HIDDEN LAYER IN ORDER TO INCREASE THE PROBABILITY OF RECOGNIZING IMAGES OF A GROUND TARGET |
| URI | https://doaj.org/article/316413583a8f47dcab143a28c8d8c763 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 2307-4205 databaseCode: DOA dateStart: 20130101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0002912200 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQigMXBALE8pIPXKONHefho9u6SUTrVKmr3eVi2Y4jcSloWfiP_CvGSVmVExdOsSb2aOQZj7-RxjMIfbQhp5wFloTUOQhQBpfYkYTEDilx1FWA2e3UbKJUqrq54buzVl8xJ2wuDzxv3FUGeJ5keZXZamTl4K2DG97SyldD5eFwRO8LqOcsmIo-mHJC6fT-JCY6J4ym-fxujpKiyq8eiGAkFGKohNC_7qWz8v3TPbN-hp6eACIWs2DP0aNwfIF-nfXKxN0aC4XFpu76VjdbDHEc7nYavNDnVtVYyUMvNvDR113_CetetCrSrxup8EoCfN3OBN1IrA7bhewjy7isU3vcAmvctKsVzN6IW_gJFIgUYaA7GC97KfZyWrzru4VYtJtW30YOvVx2tZqFaLeilvtJVBwz-9UKa9HXUr9Eh7XUyyY5NWFIPMlLQN_cAyIMmSPD6KhljnlO6ejhJDtCbA6IADCbY6nPAvhNFnzBB5aXhBaWDEB9hS6OX4_hNcKu4MymfIw9sFgIjBeVy3lRek5yD3wuUfJHBebbXGvDQIwyqcxElZmoMhNVZpgh9BItop4e5sZK2RMB7Mec7Mf8y37e_A8mb9ETGp9FTNnc79DF_d2P8B499j_vv3y_-zCZ5m9ejtKf |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEVELOPMENT+OF+AN+ALGORITHM+FOR+OPTIMIZING+NEURAL+NETWORK+TRAINING+WHEN+DETERMINING+THE+NUMBER+OF+NEURONS+IN+A+HIDDEN+LAYER+IN+ORDER+TO+INCREASE+THE+PROBABILITY+OF+RECOGNIZING+IMAGES+OF+A+GROUND+TARGET&rft.jtitle=%D0%9D%D0%B0%D0%B4%D0%B5%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D1%8C+%D0%B8+%D0%BA%D0%B0%D1%87%D0%B5%D1%81%D1%82%D0%B2%D0%BE+%D1%81%D0%BB%D0%BE%D0%B6%D0%BD%D1%8B%D1%85+%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC&rft.au=A.I.+Godunov&rft.au=S.V.+Shishkov&rft.au=S.T.+Balanyan&rft.au=F.Kh.+Al%27+Saftli&rft.date=2022-02-01&rft.pub=Penza+State+University+Publishing+House&rft.issn=2307-4205&rft.issue=4&rft_id=info:doi/10.21685%2F2307-4205-2021-4-12&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_316413583a8f47dcab143a28c8d8c763 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2307-4205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2307-4205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2307-4205&client=summon |