DEVELOPMENT OF AN ALGORITHM FOR OPTIMIZING NEURAL NETWORK TRAINING WHEN DETERMINING THE NUMBER OF NEURONS IN A HIDDEN LAYER IN ORDER TO INCREASE THE PROBABILITY OF RECOGNIZING IMAGES OF A GROUND TARGET

Background. High accuracy of recognition of typical ground objects by optoelectronic tracking systems can be achieved by optimizing the parameters of an artificial neural network (INS) such as: the dimension and structure of the INS input signal, synapses of network neurons, the number of neurons of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Надежность и качество сложных систем H. 4
Hauptverfasser: Godunov, A.I., Shishkov, S.V., Balanyan, S.T., Al' Saftli, F.Kh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Penza State University Publishing House 01.02.2022
Schlagworte:
ISSN:2307-4205
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background. High accuracy of recognition of typical ground objects by optoelectronic tracking systems can be achieved by optimizing the parameters of an artificial neural network (INS) such as: the dimension and structure of the INS input signal, synapses of network neurons, the number of neurons of each network layer and the number of network layers. Materials and methods. The existing algorithms for optimizing the training of the INS are considered when determining the number of neurons in the input, hidden and output layers of the INS in order to increase the probability of recognizing images of a ground target. The factors of improving the training of the INS, determining the number of neurons in the hidden layer for recognizing images of ground objects in such algorithms as the Levenberg – Marquardt algorithm, the Bayesian regularization algorithm, the scalable conjugate gradient algorithm and the developed algorithm are investigated. Results and conclusions. The possibility of using the developed algorithm in the subsystem of information and missile control during television homing on the target is investigated. The software implementation of the developed algorithm using the Matlab programming language is carried out.
AbstractList Background. High accuracy of recognition of typical ground objects by optoelectronic tracking systems can be achieved by optimizing the parameters of an artificial neural network (INS) such as: the dimension and structure of the INS input signal, synapses of network neurons, the number of neurons of each network layer and the number of network layers. Materials and methods. The existing algorithms for optimizing the training of the INS are considered when determining the number of neurons in the input, hidden and output layers of the INS in order to increase the probability of recognizing images of a ground target. The factors of improving the training of the INS, determining the number of neurons in the hidden layer for recognizing images of ground objects in such algorithms as the Levenberg – Marquardt algorithm, the Bayesian regularization algorithm, the scalable conjugate gradient algorithm and the developed algorithm are investigated. Results and conclusions. The possibility of using the developed algorithm in the subsystem of information and missile control during television homing on the target is investigated. The software implementation of the developed algorithm using the Matlab programming language is carried out.
Author Godunov, A.I.
Shishkov, S.V.
Al' Saftli, F.Kh
Balanyan, S.T.
Author_xml – sequence: 1
  givenname: A.I.
  surname: Godunov
  fullname: Godunov, A.I.
– sequence: 2
  givenname: S.V.
  surname: Shishkov
  fullname: Shishkov, S.V.
– sequence: 3
  givenname: S.T.
  surname: Balanyan
  fullname: Balanyan, S.T.
– sequence: 4
  givenname: F.Kh
  surname: Al' Saftli
  fullname: Al' Saftli, F.Kh
BookMark eNo9kU1u2zAQRrVIgaRpbtAFL6CWQ1I_XtIWLRGVSIOmG6QbgqKkwkEaFVI3PWJvVckOsprBm5mHAb6P0c3r-NpH0WfAXwikefKVUJzFjOAkJphAzGIgN9HdO72NHub5GWNMNkAIxnfRv0J8F7U-NEJZpPeIK8TrUhtpqwbttUH6YGUjf0hVIiVOhtdLsY_afEPWcKlW_lgJhQphhWmuwFYCqVOzFWZVrmdaHZFc1KiSRbFs1_xpGS5Em2JprF76nRH8KC7HB6O3fCtraZ9WgxE7XarrE7LhpTheXkWl0SdVIMtNKeyn6MPgX-b-4a3eR6e9sLsqrnUpd7yOAyQZibNNSCjtaQvd0BLPWhY2hAwBQ9YC-IQwnAC0DAfaAwDrQ7rpWJIBST10C72P5NXbjf7Z_Z7Ov_z0143-7C5gnH46P_05h5feUUgZ0CSnPh9Y1gXfAqOe5CHv8pCldHGxqytM4zxP_fDuA-wuibo1O7dm59ZEHXNA6H-QsoZT
ContentType Journal Article
CorporateAuthor Penza State University
Branch of the Military Academy of Logistics named after Army General A.V. Khrulev in Penza
Air Force Academy named after Professor N. E. Zhukovsky and Yu. A. Gagarin
CorporateAuthor_xml – name: Air Force Academy named after Professor N. E. Zhukovsky and Yu. A. Gagarin
– name: Penza State University
– name: Branch of the Military Academy of Logistics named after Army General A.V. Khrulev in Penza
DBID AAYXX
CITATION
DOA
DOI 10.21685/2307-4205-2021-4-12
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID oai_doaj_org_article_316413583a8f47dcab143a28c8d8c763
10_21685_2307_4205_2021_4_12
GroupedDBID 642
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c1572-79c533e3b1dfb2a4b4c922fc017b11a5240511b40c3e1114ec69d457126a1d0c3
IEDL.DBID DOA
ISSN 2307-4205
IngestDate Fri Oct 03 12:50:32 EDT 2025
Sat Nov 29 06:31:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1572-79c533e3b1dfb2a4b4c922fc017b11a5240511b40c3e1114ec69d457126a1d0c3
OpenAccessLink https://doaj.org/article/316413583a8f47dcab143a28c8d8c763
ParticipantIDs doaj_primary_oai_doaj_org_article_316413583a8f47dcab143a28c8d8c763
crossref_primary_10_21685_2307_4205_2021_4_12
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Надежность и качество сложных систем
PublicationYear 2022
Publisher Penza State University Publishing House
Publisher_xml – name: Penza State University Publishing House
SSID ssj0002912200
Score 2.1713953
Snippet Background. High accuracy of recognition of typical ground objects by optoelectronic tracking systems can be achieved by optimizing the parameters of an...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms bayesian regularization algorithm
goal
hidden layer
levenberg – marquardt algorithm
neural network
neural network training
optimization
probability
recognition
scalable conjugate gradient algorithm
Title DEVELOPMENT OF AN ALGORITHM FOR OPTIMIZING NEURAL NETWORK TRAINING WHEN DETERMINING THE NUMBER OF NEURONS IN A HIDDEN LAYER IN ORDER TO INCREASE THE PROBABILITY OF RECOGNIZING IMAGES OF A GROUND TARGET
URI https://doaj.org/article/316413583a8f47dcab143a28c8d8c763
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2307-4205
  databaseCode: DOA
  dateStart: 20130101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0002912200
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQigMXBALE8pIPXKONnZdzdFs3iWidynW1u1ys-BGJS0HLwn_kXzFOyqqcuHCKNbFHlmc88400nkHoIyB4n4Yh3m9vk3zIbMJsUSeBOeozV4FLdlOziUpKdnNT785afcWcsLk88HxwVxngeZIVLBvYmFfeDRY8_ECZY545uBzR-gLqOQumog2mNaF0en8SE52TnKbF_G6OkpIVVw9EUBIKMVRC6F9-6ax8_-Rn1s_Q0xNAxHze2HP0KBxfoF9nvTJxv8ZcYr5petXpdoshjsP9ToMV-tzJBktxUHwDH33dq09YK97JSL9uhcQrAfB1OxN0K7A8bBdCRZZxWS_3uAPWuO1WK5i94bfwEygQKcJA9zBeKsH3Ylq8U_2CL7pNp28jByWWfSPnTXRb3oj9tFUcM_vlCmuuGqFfosNa6GWbnJowJI4UFaDv2gEiDJklfrR0yG3uakpHBzfZEjIUgAgAs9k8dVkAu5kHV9Y-LypCy4F4oL5CF8evx_AaYU8Aa1bZmBIPMgVLMFY1zEjLEA1DGS5R8kcE5ttca8NAjDKJzESRmSgyE0VmckPoJVpEOT3MjZWyJwLojznpj_mX_rz5H0zeoic0PouYsrnfoYv7ux_hPXrsft5_-X73YVLN3-gE0hc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEVELOPMENT+OF+AN+ALGORITHM+FOR+OPTIMIZING+NEURAL+NETWORK+TRAINING+WHEN+DETERMINING+THE+NUMBER+OF+NEURONS+IN+A+HIDDEN+LAYER+IN+ORDER+TO+INCREASE+THE+PROBABILITY+OF+RECOGNIZING+IMAGES+OF+A+GROUND+TARGET&rft.jtitle=%D0%9D%D0%B0%D0%B4%D0%B5%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D1%8C+%D0%B8+%D0%BA%D0%B0%D1%87%D0%B5%D1%81%D1%82%D0%B2%D0%BE+%D1%81%D0%BB%D0%BE%D0%B6%D0%BD%D1%8B%D1%85+%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC&rft.au=Godunov%2C+A.I.&rft.au=Shishkov%2C+S.V.&rft.au=Balanyan%2C+S.T.&rft.au=Al%27+Saftli%2C+F.Kh&rft.date=2022-02-01&rft.issn=2307-4205&rft.issue=4&rft_id=info:doi/10.21685%2F2307-4205-2021-4-12&rft.externalDBID=n%2Fa&rft.externalDocID=10_21685_2307_4205_2021_4_12
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2307-4205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2307-4205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2307-4205&client=summon