Lung infection detection and classification using the integration of the improved grasshopper and the remora optimization approaches with improved SVM

Infectious lung diseases, such as pneumonia and COVID-19, pose significant threats to global health, with high mortality rates and substantial burdens on healthcare systems. Accurate and timely diagnosis is crucial for effective management and treatment. This study addresses the limitations of exist...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 37; číslo 27; s. 22573 - 22591
Hlavní autor: Bhimavarapu, Usharani
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.09.2025
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Infectious lung diseases, such as pneumonia and COVID-19, pose significant threats to global health, with high mortality rates and substantial burdens on healthcare systems. Accurate and timely diagnosis is crucial for effective management and treatment. This study addresses the limitations of existing diagnostic methods by proposing advanced techniques based on computer-aided diagnosis systems and enhanced machine-learning algorithms. The methodology involves the development of novel algorithms for image enhancement, segmentation, feature selection, and classification. A kurtosis-based multi-thresholding grasshopper optimization algorithm is proposed for image segmentation, reducing complexity and enhancing the accuracy of lesion identification. An improved rider optimization algorithm is also introduced for feature selection, aiming to prioritize relevant features and reduce dimensionality effectively. Furthermore, an enhanced support vector machine (SVM) algorithm for lesion classification is presented, utilizing linear mapping to generate feature scores for regions of interest. This facilitates the evaluation of the loss function and improves classification results. The approach’s effectiveness is demonstrated using datasets comprising chest X-ray and CT scan images from the LIDC-IDRI and Montgomery datasets. The improved optimization algorithms were trained and tested over the chest X-ray and CT scan image datasets. An improved SVM classified the lesions with an accuracy of 99.9% for chest X-ray images and 99.8% for CT scan images. The results proved that the improved SVM adequately classifies lung diseases from the chest X-ray and CT scan images. The findings suggest that the proposed methodologies significantly enhance the accuracy and efficiency of diagnosing pneumonia and COVID-19 from medical images. By addressing the limitations of existing diagnostic techniques, this research contributes to improving healthcare practices and ultimately reducing the burden of infectious lung diseases on a global scale.
AbstractList Infectious lung diseases, such as pneumonia and COVID-19, pose significant threats to global health, with high mortality rates and substantial burdens on healthcare systems. Accurate and timely diagnosis is crucial for effective management and treatment. This study addresses the limitations of existing diagnostic methods by proposing advanced techniques based on computer-aided diagnosis systems and enhanced machine-learning algorithms. The methodology involves the development of novel algorithms for image enhancement, segmentation, feature selection, and classification. A kurtosis-based multi-thresholding grasshopper optimization algorithm is proposed for image segmentation, reducing complexity and enhancing the accuracy of lesion identification. An improved rider optimization algorithm is also introduced for feature selection, aiming to prioritize relevant features and reduce dimensionality effectively. Furthermore, an enhanced support vector machine (SVM) algorithm for lesion classification is presented, utilizing linear mapping to generate feature scores for regions of interest. This facilitates the evaluation of the loss function and improves classification results. The approach’s effectiveness is demonstrated using datasets comprising chest X-ray and CT scan images from the LIDC-IDRI and Montgomery datasets. The improved optimization algorithms were trained and tested over the chest X-ray and CT scan image datasets. An improved SVM classified the lesions with an accuracy of 99.9% for chest X-ray images and 99.8% for CT scan images. The results proved that the improved SVM adequately classifies lung diseases from the chest X-ray and CT scan images. The findings suggest that the proposed methodologies significantly enhance the accuracy and efficiency of diagnosing pneumonia and COVID-19 from medical images. By addressing the limitations of existing diagnostic techniques, this research contributes to improving healthcare practices and ultimately reducing the burden of infectious lung diseases on a global scale.
Author Bhimavarapu, Usharani
Author_xml – sequence: 1
  givenname: Usharani
  surname: Bhimavarapu
  fullname: Bhimavarapu, Usharani
  email: ushareddy@kluniversity.in
  organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation
BookMark eNp9kMtOwzAQRS1UJNrCD7DKDwTsvBwvUcVLCmLBY2s59rhx1diRnYLgQ_he3KYSOzYzoztzrkZ3gWbWWUDokuArgjG9DhiXGUlxVqQEV_t6guakyPM0x2U9Q3PMiriuivwMLULYYIyLqi7n6KfZ2XVirAY5GmcTBeNxElYlcitCMNpIcZB2wcTjsYMIjLD2k-r0JPWDdx-gkqiH0LlhAH8w2S899M6LxA2j6c33xIkhAkJ2EJJPM3Z_Bi_vT-foVIttgItjX6K3u9vX1UPaPN8_rm6aVJKSkpSqQrWUtpSVLRValITQmgomcwBBKdSMUt0yUWtJMtZC3dYVkwqUFFRpyfIlyiZf6V0IHjQfvOmF_-IE832yfEqWx2T5IVlOIpRPUIjHdg2eb9zO2_jnf9QvZOuDVg
Cites_doi 10.1007/s12553-022-00700-8
10.1016/j.neucom.2017.02.040
10.1016/B978-0-323-90769-9.00011-6
10.1109/ICTAI.2009.60
10.1038/s41598-016-0023-2
10.1007/s10489-017-1019-8
10.1016/j.bbe.2021.05.013
10.1007/s10489-020-01826-w
10.1148/radiol.2462070712
10.1016/j.neucom.2015.05.044
10.1111/1754-9485.13273
10.1016/j.future.2007.05.003
10.1109/ICCTCT.2018.8551008
10.1007/s12652-017-0655-5
10.1007/s10044-021-00984-y
10.1109/TIM.2018.2836058
10.1016/S1473-3099(06)70411-X
10.1007/s00521-018-3824-3
10.1007/s11227-020-03566-7
10.1186/s12938-020-00831-x
10.3390/rs11091134
10.1007/s12652-022-04118-y
10.1016/j.bspc.2022.103791
10.1007/978-3-030-77246-8_2
10.1016/j.patcog.2020.107747
10.1145/3510413
10.14419/ijet.v7i2.26.12538
10.1109/ACCESS.2019.2891673
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00521-024-10624-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 22591
ExternalDocumentID 10_1007_s00521_024_10624_1
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PUEGO
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c1571-7d4db77b795b7afa511787a9c3eea77e8977fb9a8fc129be8b869cdedca7dfc93
IEDL.DBID RSV
ISSN 0941-0643
IngestDate Sat Nov 29 07:31:29 EST 2025
Tue Sep 09 01:10:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords Grasshopper optimization
Lung disease
Rider optimization
Multi-thresholding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1571-7d4db77b795b7afa511787a9c3eea77e8977fb9a8fc129be8b869cdedca7dfc93
PageCount 19
ParticipantIDs crossref_primary_10_1007_s00521_024_10624_1
springer_journals_10_1007_s00521_024_10624_1
PublicationCentury 2000
PublicationDate 20250900
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Publisher_xml – name: Springer London
References VK Gunjan (10624_CR28) 2022; 12
K Senthil Kumar (10624_CR26) 2019; 2019
H Liang (10624_CR17) 2019; 7
10624_CR20
D Binu (10624_CR24) 2018; 68
S Akter (10624_CR1) 2014; 36
10624_CR21
A Oulefki (10624_CR18) 2021; 114
10624_CR22
DM Hansell (10624_CR4) 2008; 246
S Ahuja (10624_CR7) 2021; 51
SZ Mirjalili (10624_CR25) 2018; 48
M Shanid (10624_CR33) 2020; 32
H Jia (10624_CR11) 2019; 11
SH Kassania (10624_CR35) 2021; 41
CFGD Santos (10624_CR23) 2022; 54
Y Xu (10624_CR27) 2022; 77
K Pradhan (10624_CR29) 2022; 14
S Dai (10624_CR15) 2015; 168
10624_CR9
DA Moses (10624_CR6) 2021; 65
10624_CR8
A Forestiero (10624_CR13) 2008; 24
KS Manic (10624_CR16) 2016; 9
Y Shen (10624_CR2) 2016; 6
S Perumal (10624_CR31) 2018; 7
SK Obaro (10624_CR3) 2006; 6
A Narin (10624_CR5) 2021; 24
10624_CR34
10624_CR14
10624_CR36
R Selvanambi (10624_CR32) 2020; 32
L Duan (10624_CR10) 2021; 77
L He (10624_CR12) 2017; 240
10624_CR19
M Prabukumar (10624_CR30) 2019; 10
L Hussain (10624_CR37) 2020; 19
References_xml – volume: 12
  start-page: 1197
  issue: 6
  year: 2022
  ident: 10624_CR28
  publication-title: Heal Technol
  doi: 10.1007/s12553-022-00700-8
– volume: 240
  start-page: 152
  year: 2017
  ident: 10624_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.040
– ident: 10624_CR8
  doi: 10.1016/B978-0-323-90769-9.00011-6
– ident: 10624_CR14
  doi: 10.1109/ICTAI.2009.60
– ident: 10624_CR20
– volume: 6
  start-page: 20
  issue: 1
  year: 2016
  ident: 10624_CR2
  publication-title: Sci Rep
  doi: 10.1038/s41598-016-0023-2
– volume: 36
  start-page: 97
  issue: 2
  year: 2014
  ident: 10624_CR1
  publication-title: Malays J Pathol
– volume: 9
  start-page: 89949
  issue: 12
  year: 2016
  ident: 10624_CR16
  publication-title: Ind J Sci Technol
– volume: 2019
  start-page: 4909846
  issue: 1
  year: 2019
  ident: 10624_CR26
  publication-title: Comput Math Methods Med
– ident: 10624_CR22
– volume: 48
  start-page: 805
  year: 2018
  ident: 10624_CR25
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1019-8
– volume: 41
  start-page: 867
  issue: 3
  year: 2021
  ident: 10624_CR35
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2021.05.013
– volume: 51
  start-page: 571
  year: 2021
  ident: 10624_CR7
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01826-w
– volume: 246
  start-page: 697
  issue: 3
  year: 2008
  ident: 10624_CR4
  publication-title: Radiology
  doi: 10.1148/radiol.2462070712
– volume: 168
  start-page: 799
  year: 2015
  ident: 10624_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.044
– volume: 65
  start-page: 498
  issue: 5
  year: 2021
  ident: 10624_CR6
  publication-title: J Med Imaging Radiat Oncol
  doi: 10.1111/1754-9485.13273
– volume: 24
  start-page: 235
  issue: 3
  year: 2008
  ident: 10624_CR13
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2007.05.003
– ident: 10624_CR9
  doi: 10.1109/ICCTCT.2018.8551008
– volume: 10
  start-page: 267
  year: 2019
  ident: 10624_CR30
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-017-0655-5
– volume: 24
  start-page: 1207
  year: 2021
  ident: 10624_CR5
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-021-00984-y
– volume: 68
  start-page: 2
  issue: 1
  year: 2018
  ident: 10624_CR24
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2018.2836058
– volume: 6
  start-page: 150
  issue: 3
  year: 2006
  ident: 10624_CR3
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(06)70411-X
– volume: 32
  start-page: 4373
  year: 2020
  ident: 10624_CR32
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3824-3
– volume: 77
  start-page: 6734
  issue: 7
  year: 2021
  ident: 10624_CR10
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03566-7
– volume: 19
  start-page: 1
  year: 2020
  ident: 10624_CR37
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-020-00831-x
– ident: 10624_CR21
– volume: 11
  start-page: 1134
  issue: 9
  year: 2019
  ident: 10624_CR11
  publication-title: Remote Sens
  doi: 10.3390/rs11091134
– volume: 14
  start-page: 12933
  issue: 9
  year: 2022
  ident: 10624_CR29
  publication-title: J Ambient Intell Humanized Comput
  doi: 10.1007/s12652-022-04118-y
– volume: 77
  year: 2022
  ident: 10624_CR27
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103791
– ident: 10624_CR34
– ident: 10624_CR36
  doi: 10.1007/978-3-030-77246-8_2
– volume: 32
  start-page: 2050001
  issue: 01
  year: 2020
  ident: 10624_CR33
  publication-title: Biomed Eng: Appl, Basis Commun
– ident: 10624_CR19
– volume: 114
  year: 2021
  ident: 10624_CR18
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107747
– volume: 54
  start-page: 1
  issue: 10s
  year: 2022
  ident: 10624_CR23
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3510413
– volume: 7
  start-page: 74
  issue: 226
  year: 2018
  ident: 10624_CR31
  publication-title: Int J Eng Technol
  doi: 10.14419/ijet.v7i2.26.12538
– volume: 7
  start-page: 11258
  year: 2019
  ident: 10624_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891673
SSID ssj0004685
Score 2.3900218
Snippet Infectious lung diseases, such as pneumonia and COVID-19, pose significant threats to global health, with high mortality rates and substantial burdens on...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 22573
SubjectTerms Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Probability and Statistics in Computer Science
S.I.: Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications
Special Issue on Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications
Title Lung infection detection and classification using the integration of the improved grasshopper and the remora optimization approaches with improved SVM
URI https://link.springer.com/article/10.1007/s00521-024-10624-1
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqK85IENIjWJEzsjQlQMUCEKVbfIT2AgqZrCT-H3cnbsAhJCgiWKHMuxbN_58_m7O4ROciP6UqUmknksIwIIPhJxSqJ-qoQBfZhR0yaboMMhm0yKW-8U1gS2e7iSdJp64exmLZhw9E0IqI7cPpfRCmx3zCZsuBuNv3hDukSccG6xnB6SeleZn9v4vh19vwt1W8yg-7_ObaB1DynxebsGNtGSrrZQN6RrwF56t9H7NQg2DuyrCis992-8UlhaGG15Q26qsOXDP2JAhzgElLCltWmLnCVCKwzlTfNUT6fwH9uI_Tiz3F2Oa9BFL97JE4fI5brB1vD72cBofLODHgaX9xdXkU_LEMk4o3FEFVGCUkGLTFBuOEA2kHpeyFRrTqlmACmNKDgzEsCE0EywvJBKK8mpMrJId1Gnqiu9hzDACcWo1ABSOUmJZCIh9sREs1wSkiQ9dBpmp5y20TfKRZxlN-QlDHnphryMe-gsTE7pJbH5pfr-36ofoLXE5v51_LJD1JnPXvURWpVv8-dmduyW4AfQJNmA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BX1xXnFe8-CbFtY2bdpHEYfiNsTNsbeSq_pgO9bpT_H3epKm04EI-lJKGtKQ5Jx8OfnOOQidxZq3hQy1J2JfeAQQvMf9kHjtUHIN-jCiuko2Qfv9ZDxO751TWFmz3esrSaup585uxoIJR9-AgOqIzXMZrRDYsUzE_IfB6Js3pE3ECecWw-khoXOV-bmNxe1o8S7UbjGd5v86t4k2HKTEl9Ua2EJLKt9GzTpdA3bSu4M-uiDYuGZf5ViqmXtjucTCwGjDG7JThQ0f_gkDOsR1QAlTWuiqyFoilMRQXpbPxWQC_zGNmI9Tw91luABd9OqcPHEduVyV2Bh-vxoYjHq76LFzPby68VxaBk_4EfU9KonklHKaRpwyzQCygdSzVIRKMUpVApBS85QlWgCY4CrhSZwKqaRgVGqRhnuokRe52kcY4IRMqFAAUhkJiUh4QMyJiUaxICQIWui8np1sUkXfyOZxlu2QZzDkmR3yzG-hi3pyMieJ5S_VD_5W_RSt3Qx73ax72787ROuByQNsuWZHqDGbvqljtCreZy_l9MQux08LSNxk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60inixPrE-9-BNQ5tkk02OohbFWgrV0lvYp3owCU31p_h7nd0ktQURxEsIm2Wz7GP2m9lvZhA6CzXvCOlrR4SucAggeIe7PnE6vuQa5GFAdZlsgvb70XgcD-a8-C3bvb6SLH0aTJSmdNrOpW7PHN-MNRPUYI-AGAnNcxmtEEOkN_r6cDTnGWmTcoIOY_g9xK_cZn5uY_FoWrwXtcdNt_n_jm6ijQpq4stybWyhJZVuo2adxgFXu3oHffZgw-OalZViqabVG0slFgZeGz6RnUJsePLPGFAjrgNNmNJMl0XWQqEkhvKieMnyHP5jGjEfJ4bTy3AGMuqtcv7EdURzVWBjEP5uYDh62EVP3ZvHq1unStfgCDegrkMlkZxSTuOAU6YZQDmQBiwWvlKMUhUB1NQ8ZpEWADK4ingUxkIqKRiVWsT-HmqkWar2EQaYISMqFIBXRnwiIu4Ro0nRIBSEeF4LndczleRlVI5kFn_ZDnkCQ57YIU_cFrqoJyqpdmjxS_WDv1U_RWuD627Su-vfH6J1z6QHthS0I9SYTt7VMVoVH9PXYnJiV-YXnzjlSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lung+infection+detection+and+classification+using+the+integration+of+the+improved+grasshopper+and+the+remora+optimization+approaches+with+improved+SVM&rft.jtitle=Neural+computing+%26+applications&rft.au=Bhimavarapu%2C+Usharani&rft.date=2025-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=27&rft.spage=22573&rft.epage=22591&rft_id=info:doi/10.1007%2Fs00521-024-10624-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_024_10624_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon