Bond ionicity, lattice energy and structural evolution of Ta substituted 0.15ZnO-0.15Nb2O5-0.55TiO2 dielectric ceramics
In the present study, influences of Ta5+ substitution on Nb site on crystal structural evolution, Raman spectra and microwave dielectric properties of Zn0.15Nb0.3-xTaxTi0.55O2 (0 ≤ x ≤ 0.3) ceramics were investigated. Bond ionicity, lattice energy and octahedral distortion of Zn0.15Nb0.3-xTaxTi0.55O...
Uloženo v:
| Vydáno v: | Ceramics international Ročník 45; číslo 7; s. 8832 - 8839 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2019
|
| Témata: | |
| ISSN: | 0272-8842, 1873-3956 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the present study, influences of Ta5+ substitution on Nb site on crystal structural evolution, Raman spectra and microwave dielectric properties of Zn0.15Nb0.3-xTaxTi0.55O2 (0 ≤ x ≤ 0.3) ceramics were investigated. Bond ionicity, lattice energy and octahedral distortion of Zn0.15Nb0.3-xTaxTi0.55O2 structure calculated based on chemical bond theory and Rietveld refinement analysis were used together to understand correlation between crystal structure and microwave dielectric properties. The results showed that rutile Zn0.15Nb0.3-xTaxTi0.55O2 solid solutions could be synthesized in whole composition range of x = 0–0.3. With increase of x value, cell volume and bond length are reduced, which is confirmed by blue shift of Raman vibrational peaks. Dielectric constant (εr) is closely related to average NbO bond ionicity. Quality factor (Q × f) values and temperature coefficient values of resonant frequency (τf) are mainly affected by lattice energy and octahedral distortion respectively. In Zn0.15Nb0.3-xTaxTi0.55O2 ceramics, proper substitution of Ta5+ ion efficiently improves Q × f values and reduces the τf values. Optimal microwave dielectric properties of εr = 75.87, Q × f = 22050 GHz and τf = 234.6 ppm/°C were obtained for Zn0.15Nb0.3-xTaxTi0.55O2 solid solutions at x = 0.2 when sintered at 1100 °C. |
|---|---|
| AbstractList | In the present study, influences of Ta5+ substitution on Nb site on crystal structural evolution, Raman spectra and microwave dielectric properties of Zn0.15Nb0.3-xTaxTi0.55O2 (0 ≤ x ≤ 0.3) ceramics were investigated. Bond ionicity, lattice energy and octahedral distortion of Zn0.15Nb0.3-xTaxTi0.55O2 structure calculated based on chemical bond theory and Rietveld refinement analysis were used together to understand correlation between crystal structure and microwave dielectric properties. The results showed that rutile Zn0.15Nb0.3-xTaxTi0.55O2 solid solutions could be synthesized in whole composition range of x = 0–0.3. With increase of x value, cell volume and bond length are reduced, which is confirmed by blue shift of Raman vibrational peaks. Dielectric constant (εr) is closely related to average NbO bond ionicity. Quality factor (Q × f) values and temperature coefficient values of resonant frequency (τf) are mainly affected by lattice energy and octahedral distortion respectively. In Zn0.15Nb0.3-xTaxTi0.55O2 ceramics, proper substitution of Ta5+ ion efficiently improves Q × f values and reduces the τf values. Optimal microwave dielectric properties of εr = 75.87, Q × f = 22050 GHz and τf = 234.6 ppm/°C were obtained for Zn0.15Nb0.3-xTaxTi0.55O2 solid solutions at x = 0.2 when sintered at 1100 °C. |
| Author | Yang, Hongyu Chen, Yawei Zhang, Shuren Li, Enzhu Yuan, Ying Yang, Hongcheng |
| Author_xml | – sequence: 1 givenname: Yawei surname: Chen fullname: Chen, Yawei organization: National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 610054, China – sequence: 2 givenname: Shuren surname: Zhang fullname: Zhang, Shuren organization: National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 610054, China – sequence: 3 givenname: Hongyu surname: Yang fullname: Yang, Hongyu organization: National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 610054, China – sequence: 4 givenname: Hongcheng surname: Yang fullname: Yang, Hongcheng organization: National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 610054, China – sequence: 5 givenname: Ying surname: Yuan fullname: Yuan, Ying organization: National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 610054, China – sequence: 6 givenname: Enzhu surname: Li fullname: Li, Enzhu email: lienzhu@uestc.edu.cn organization: National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 610054, China |
| BookMark | eNqFkMtOwzAQRS0EEm3hF5A_gATbifOQWAAVL6kim7JhY02cCXKVJsh2ivr3OCps2HQ1I82c0dwzJ6f90CMhV5zFnPHsZhNrtLA1vY8F42XMeCw4OyEzXuRJlJQyOyUzJnIRFUUqzsncuQ0LYJmyGfl-GPqGmqE32vj9Ne3Ae6ORYo_2c08hDJ23o_ajhY7ibuhGH7bp0NI1UDfWzhs_emxo-EZ-9FU01bdaVDJ0Uq5NJWhjsEPtrdH08Kp2F-Sshc7h5W9dkPenx_XyJVpVz6_L-1WkucxZVCLkNZZQSGg4JKJoIeF1xvM6Bch1xliLqBMpUlk2TBctzyHnCGVT1wA8TRYkO9zVdnDOYqu-rNmC3SvO1KRPbdSfPjXpU4yroC-At__AIAim7N6C6Y7jdwccQ7idQaucNthrbIwNKlQzmGMnfgBIQpM6 |
| CitedBy_id | crossref_primary_10_1016_j_jeurceramsoc_2022_06_014 crossref_primary_10_1007_s10854_024_13270_4 crossref_primary_10_1016_j_ceramint_2022_09_043 crossref_primary_10_1039_D0QI00907E crossref_primary_10_1007_s10854_023_11672_4 crossref_primary_10_1016_j_ceramint_2022_11_021 crossref_primary_10_1016_j_ceramint_2022_09_378 crossref_primary_10_1007_s11664_025_11956_x crossref_primary_10_1007_s40145_021_0528_4 crossref_primary_10_1007_s10854_022_08606_x crossref_primary_10_1007_s10854_024_13450_2 |
| Cites_doi | 10.1016/j.ceramint.2007.09.049 10.1016/j.jallcom.2015.03.242 10.1111/jace.15077 10.1179/1743280415Y.0000000007 10.1107/S0021889801002242 10.1007/s10854-007-9503-2 10.1016/S0921-5093(01)01811-1 10.1016/j.matchemphys.2017.06.025 10.1039/c2jm34603f 10.1111/j.1551-2916.2011.04408.x 10.1039/C8TC02260G 10.1111/j.1551-2916.2009.03077.x 10.1021/cm001209e 10.1016/j.jeurceramsoc.2017.12.044 10.1080/0141159031000076110 10.1016/j.jallcom.2016.09.281 10.1021/cm703273z 10.1557/JMR.2005.0384 10.1016/j.ceramint.2017.08.109 10.1111/j.1551-2916.2012.05231.x 10.1063/1.2112179 10.1111/j.1151-2916.2000.tb01623.x 10.1016/S0955-2219(01)00102-9 10.1143/JJAP.40.5994 10.1016/j.ceramint.2018.01.249 10.1021/cm00013a025 10.1016/S0955-2219(03)00144-4 10.1016/j.ceramint.2016.01.182 10.1016/j.ceramint.2018.01.063 10.1021/acs.inorgchem.8b03169 10.1016/j.jallcom.2015.12.082 10.1021/acs.inorgchem.8b00873 10.1016/j.jallcom.2016.09.327 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd and Techna Group S.r.l. |
| Copyright_xml | – notice: 2019 Elsevier Ltd and Techna Group S.r.l. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ceramint.2019.01.210 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3956 |
| EndPage | 8839 |
| ExternalDocumentID | 10_1016_j_ceramint_2019_01_210 S0272884219302299 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K WUQ XPP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c1570-9ea7be9a85ad1a328fa31b617b4aa7c600feec352459d0c8f17a71ea9dbbaa143 |
| ISSN | 0272-8842 |
| IngestDate | Sat Nov 29 05:42:37 EST 2025 Tue Nov 18 21:56:44 EST 2025 Fri Feb 23 02:27:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Ceramic Zn0.15Nb0.3Ti0.55O2 Dielectric properties Ta2O5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1570-9ea7be9a85ad1a328fa31b617b4aa7c600feec352459d0c8f17a71ea9dbbaa143 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1016_j_ceramint_2019_01_210 crossref_citationtrail_10_1016_j_ceramint_2019_01_210 elsevier_sciencedirect_doi_10_1016_j_ceramint_2019_01_210 |
| PublicationCentury | 2000 |
| PublicationDate | May 2019 2019-05-00 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Ceramics international |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Zuo, Cheng (bib22) 2016; 42 Rejini, Subodh, Sebastian (bib26) 2008; 19 Magrez, Cochet, Joubert, Louarn, Ganne, Chauvet (bib16) 2001; 13 Kim, Kang (bib4) 2008; 34 Kroumova, Aroyo, Perez-Mato, Kirov, Capillas, Ivantchev, Wondratschek (bib23) 2003; 76 Dias, Bijumon, Sebastian, Moreira (bib27) 2005; 98 Ki Hyun, Yoon Hee, Woo Sup, Jae Beom, Eung Soo (bib34) 1996; 35 Wang, Yuan, Zhu, Feng, Liu, Xu, Zhou, Chen (bib2) 2018; 44 Dong-Wan, Jin-Ho, Jeong-Ryeol, Kug-Sun (bib3) 2001; 40 Mao Min, Liu Xiao, Chen Xiang (bib15) 2011; 94 Sebastian, Ubic, Jantunen (bib1) 2015; 60 Wise, Reaney, Lee, Price, Iddles, Cannell (bib29) 2001; 21 Yang, Zhang, Yang, Zhang, Li (bib5) 2018; 57 Zhou, Pang, Wang, Reaney (bib33) 2018; 6 Zhao, Zhang (bib13) 2016; 662 Zhang, Zuo (bib10) 2017; 100 Li, Yang, Yang, Zhang (bib6) 2018; 44 Yang, Li, Duan, He, Zhang (bib8) 2017; 199 Yoon, Kim, Cho, Hong (bib30) 2003; 23 Xia, Li, Ning, Liao (bib11) 2012; 95 Jehng, Wachs (bib24) 1991 Zhou, Pang, Guo, Qi, Shao, Yao, Randall (bib31) 2012; 22 Zhou, Pang, Wang, Guo, Yang, Qi, Li, Jin, Reaney (bib20) 2018; 38 Xiao, Lou, Zhou, Gu, Wei, Zhang (bib9) 2017; 43 Zhang, Zhao, Liu, Song, Wang, Xiao (bib12) 2015; 640 Surendran, Sebastian (bib25) 2011; 20 Li, Zhou, Guo, Pang, Chen, Qi, Wang, Liu (bib21) 2017; 694 Toby Brian (bib14) 2004; 34 Fan, Chen, Liu (bib17) 2008; 20 Pan, Cheng, Mao, Wu (bib18) 2017; 693 Chen, Huang (bib28) 2002; 334 Valant, Suvorov (bib32) 2000; 83 Huang, Chen (bib7) 2009; 92 Yang, Zhang, Chen, Yang, Yuan, Li (bib19) 2019; 58 Zhou (10.1016/j.ceramint.2019.01.210_bib33) 2018; 6 Yang (10.1016/j.ceramint.2019.01.210_bib5) 2018; 57 Chen (10.1016/j.ceramint.2019.01.210_bib28) 2002; 334 Zhao (10.1016/j.ceramint.2019.01.210_bib13) 2016; 662 Surendran (10.1016/j.ceramint.2019.01.210_bib25) 2011; 20 Dias (10.1016/j.ceramint.2019.01.210_bib27) 2005; 98 Sebastian (10.1016/j.ceramint.2019.01.210_bib1) 2015; 60 Jehng (10.1016/j.ceramint.2019.01.210_bib24) 1991 Zhang (10.1016/j.ceramint.2019.01.210_bib10) 2017; 100 Magrez (10.1016/j.ceramint.2019.01.210_bib16) 2001; 13 Yoon (10.1016/j.ceramint.2019.01.210_bib30) 2003; 23 Kim (10.1016/j.ceramint.2019.01.210_bib4) 2008; 34 Wang (10.1016/j.ceramint.2019.01.210_bib2) 2018; 44 Yang (10.1016/j.ceramint.2019.01.210_bib8) 2017; 199 Yang (10.1016/j.ceramint.2019.01.210_bib19) 2019; 58 Valant (10.1016/j.ceramint.2019.01.210_bib32) 2000; 83 Li (10.1016/j.ceramint.2019.01.210_bib21) 2017; 694 Dong-Wan (10.1016/j.ceramint.2019.01.210_bib3) 2001; 40 Xiao (10.1016/j.ceramint.2019.01.210_bib9) 2017; 43 Zhou (10.1016/j.ceramint.2019.01.210_bib20) 2018; 38 Pan (10.1016/j.ceramint.2019.01.210_bib18) 2017; 693 Zhou (10.1016/j.ceramint.2019.01.210_bib31) 2012; 22 Xia (10.1016/j.ceramint.2019.01.210_bib11) 2012; 95 Zhang (10.1016/j.ceramint.2019.01.210_bib22) 2016; 42 Zhang (10.1016/j.ceramint.2019.01.210_bib12) 2015; 640 Toby Brian (10.1016/j.ceramint.2019.01.210_bib14) 2004; 34 Rejini (10.1016/j.ceramint.2019.01.210_bib26) 2008; 19 Li (10.1016/j.ceramint.2019.01.210_bib6) 2018; 44 Wise (10.1016/j.ceramint.2019.01.210_bib29) 2001; 21 Fan (10.1016/j.ceramint.2019.01.210_bib17) 2008; 20 Kroumova (10.1016/j.ceramint.2019.01.210_bib23) 2003; 76 Mao Min (10.1016/j.ceramint.2019.01.210_bib15) 2011; 94 Huang (10.1016/j.ceramint.2019.01.210_bib7) 2009; 92 Ki Hyun (10.1016/j.ceramint.2019.01.210_bib34) 1996; 35 |
| References_xml | – volume: 60 start-page: 392 year: 2015 end-page: 412 ident: bib1 article-title: Low-loss dielectric ceramic materials and their properties publication-title: Int. Mater. Rev. – volume: 100 start-page: 5249 year: 2017 end-page: 5258 ident: bib10 article-title: Octahedral distortion, phase structural stability, and microwave dielectric properties in equivalently substituted LaTiNbO6 ceramics publication-title: J. Am. Ceram. Soc. – volume: 20 start-page: 4092 year: 2008 end-page: 4098 ident: bib17 article-title: Structural dependence of microwave dielectric properties of SrRAlO4 (R = Sm, Nd, La) ceramics: crystal structure refinement and infrared reflectivity study publication-title: Chem. Mater. – start-page: 100 year: 1991 end-page: 107 ident: bib24 article-title: Structural chemistry and Raman spectra of niobium oxides publication-title: Chem. Mater. – volume: 43 start-page: 15567 year: 2017 end-page: 15572 ident: bib9 article-title: Crystal structure and microwave dielectric properties of Ta5+ substituted MgZrNb2O8 ceramics publication-title: Ceram. Int. – volume: 34 start-page: 210 year: 2004 end-page: 213 ident: bib14 article-title: EXPGUI, a graphical user interface for GSAS publication-title: J. Appl. Crystallogr. – volume: 693 start-page: 792 year: 2017 end-page: 798 ident: bib18 article-title: Investigation and characterization on crystal structure of ixiolite structure ATiNb2O8 (A = Mg, Zn) ceramics at microwave frequency based on the complex chemical bond theory publication-title: J. Alloy. Comp. – volume: 44 start-page: 8072 year: 2018 end-page: 8080 ident: bib6 article-title: Effects of Li2O-B2O3-SiO2 glass on the low-temperature sintering of Zn0.15Nb0.3Ti0.55O2 ceramics publication-title: Ceram. Int. – volume: 19 start-page: 1153 year: 2008 end-page: 1155 ident: bib26 article-title: Ca4La2Ti5O17: a novel low loss dielectric ceramics in the CaO–La2O3–TiO2 system publication-title: J. Mater. Sci. Mater. Electron. – volume: 98 year: 2005 ident: bib27 article-title: Vibrational spectroscopy and microwave dielectric properties of Ca5−xBaxNb2TiO12 and Ca5−xBaxTa2TiO12 ceramics publication-title: J. Appl. Phys. – volume: 199 start-page: 43 year: 2017 end-page: 53 ident: bib8 article-title: Structure, microwave properties and low temperature sintering of Ta2O5 and Co2O3 codoped Zn0.5Ti0.5NbO4 ceramics publication-title: Mater. Chem. Phys. – volume: 662 start-page: 455 year: 2016 end-page: 460 ident: bib13 article-title: High-Q microwave dielectric ceramics using Zn3Nb1.88Ta0.12O8 solid solutions publication-title: J. Alloy. Comp. – volume: 94 start-page: 2506 year: 2011 end-page: 2511 ident: bib15 article-title: Structural evolution and its effects on dielectric loss in Sr1+xSm1−xAl1−xTixO4 microwave dielectric ceramics publication-title: J. Am. Ceram. Soc. – volume: 42 start-page: 7681 year: 2016 end-page: 7689 ident: bib22 article-title: Relationship of the structural phase transition and microwave dielectric properties in MgZrNb2O8–TiO2 ceramics publication-title: Ceram. Int. – volume: 23 start-page: 2549 year: 2003 end-page: 2552 ident: bib30 article-title: Phase analysis and microwave dielectric properties of LTCC TiO2 with glass system publication-title: J. Eur. Ceram. Soc. – volume: 22 start-page: 21412 year: 2012 end-page: 21419 ident: bib31 article-title: Phase evolution, phase transition, and microwave dielectric properties of scheelite structured xBi(Fe1/3Mo2/3)O4–(1−x)BiVO4 (0.0 ≤ x ≤ 1.0) low temperature firing ceramics publication-title: J. Mater. Chem. – volume: 57 start-page: 8264 year: 2018 end-page: 8275 ident: bib5 article-title: Structural evolution and microwave dielectric properties of xZn0.5Ti0.5NbO4-(1–x)Zn0.15Nb0.3Ti0.55O2 ceramics publication-title: lnorg. Chem. – volume: 334 start-page: 250 year: 2002 end-page: 256 ident: bib28 article-title: Microwave dielectric properties of Ba2−xSm4+2/3xTi9O26 ceramics with zero temperature coefficient publication-title: Mater. Sci. Eng., A – volume: 21 start-page: 1723 year: 2001 end-page: 1726 ident: bib29 article-title: Structure–microwave property relations in (SrxCa(1−x))n+1TinO3n+1 publication-title: J. Eur. Ceram. Soc. – volume: 640 start-page: 90 year: 2015 end-page: 94 ident: bib12 article-title: Enhanced microwave dielectric properties of NdNbO4 ceramic by Ta5+ substitution publication-title: J. Alloy. Comp. – volume: 38 start-page: 1556 year: 2018 end-page: 1561 ident: bib20 article-title: Crystal structure, impedance and broadband dielectric spectra of ordered scheelite-structured Bi(Sc1/3Mo2/3)O4 ceramic publication-title: J. Eur. Ceram. Soc. – volume: 76 start-page: 155 year: 2003 end-page: 170 ident: bib23 article-title: Bilbao crystallographic server : useful databases and tools for phase-transition studies publication-title: Phase Transitions – volume: 35 start-page: 5145 year: 1996 ident: bib34 article-title: Dielectric Properties of C a 1- x S m 2 x/3 T i O 3 – L i 1/2 L n 1/2 T i O 3 Ceramics publication-title: Jpn. J. Appl. Phys. – volume: 34 start-page: 883 year: 2008 end-page: 888 ident: bib4 article-title: Relationships between crystal structure and microwave dielectric properties of (Zn1/3B2/35+)xTi1−xO2 (B5+=Nb, Ta) ceramics publication-title: Ceram. Int. – volume: 694 start-page: 40 year: 2017 end-page: 45 ident: bib21 article-title: Structure, Raman spectra, far-infrared spectra and microwave dielectric properties of temperature independent CeVO4TiO2 composite ceramics publication-title: J. Alloy. Comp. – volume: 13 start-page: 3893 year: 2001 end-page: 3898 ident: bib16 article-title: High internal stresses in Sr1-xLa1+xAl1-xMgxO4 solid solution (0 ≤ x ≤ 0.7) characterized by infrared and Raman spectroscopies coupled with crystal structure refinement publication-title: Chem. Mater. – volume: 83 start-page: 2721 year: 2000 end-page: 2729 ident: bib32 article-title: Chemical compatibility between silver electrodes and low-firing binary-oxide compounds: conceptual study publication-title: J. Am. Ceram. Soc. – volume: 44 start-page: 6601 year: 2018 end-page: 6606 ident: bib2 article-title: Sintering behavior, phase evolutions and microwave dielectric properties of LaGaO3-SrTiO3 ceramics modified by CeO2 additives publication-title: Ceram. Int. – volume: 20 start-page: 2919 year: 2011 end-page: 2926 ident: bib25 article-title: Low loss dielectrics in Ba[(Mg1/3Ta2/3)1−xTix]O3 and Ba[(Mg1−xZnx)1/3Ta2/3]O3 systems, publication-title: J. Mater. Res. – volume: 6 start-page: 9290 year: 2018 end-page: 9313 ident: bib33 article-title: BiVO4 based high k microwave dielectric materials: a review publication-title: J. Mater. Chem. C – volume: 92 start-page: 1845 year: 2009 end-page: 1848 ident: bib7 article-title: Reduced dielectric loss of modified ZnNb2O6 ceramics by substituting Nb5+ with Ta5+ publication-title: J. Am. Ceram. Soc. – volume: 95 start-page: 2587 year: 2012 end-page: 2592 ident: bib11 article-title: Relationship between bond ionicity, lattice energy, and microwave dielectric properties of Zn(Ta1−xNbx)2O6 ceramics publication-title: J. Am. Ceram. Soc. – volume: 58 start-page: 968 year: 2019 end-page: 976 ident: bib19 article-title: Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics publication-title: lnorg. Chem. – volume: 40 start-page: 5994 year: 2001 ident: bib3 article-title: Phase constitutions and microwave dielectric properties of Zn 3 Nb 2 O 8 –TiO 2 publication-title: Jpn. J. Appl. Phys. – volume: 34 start-page: 883 year: 2008 ident: 10.1016/j.ceramint.2019.01.210_bib4 article-title: Relationships between crystal structure and microwave dielectric properties of (Zn1/3B2/35+)xTi1−xO2 (B5+=Nb, Ta) ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2007.09.049 – volume: 640 start-page: 90 year: 2015 ident: 10.1016/j.ceramint.2019.01.210_bib12 article-title: Enhanced microwave dielectric properties of NdNbO4 ceramic by Ta5+ substitution publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2015.03.242 – volume: 100 start-page: 5249 year: 2017 ident: 10.1016/j.ceramint.2019.01.210_bib10 article-title: Octahedral distortion, phase structural stability, and microwave dielectric properties in equivalently substituted LaTiNbO6 ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.15077 – volume: 60 start-page: 392 year: 2015 ident: 10.1016/j.ceramint.2019.01.210_bib1 article-title: Low-loss dielectric ceramic materials and their properties publication-title: Int. Mater. Rev. doi: 10.1179/1743280415Y.0000000007 – volume: 34 start-page: 210 year: 2004 ident: 10.1016/j.ceramint.2019.01.210_bib14 article-title: EXPGUI, a graphical user interface for GSAS publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889801002242 – volume: 19 start-page: 1153 year: 2008 ident: 10.1016/j.ceramint.2019.01.210_bib26 article-title: Ca4La2Ti5O17: a novel low loss dielectric ceramics in the CaO–La2O3–TiO2 system publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-007-9503-2 – volume: 334 start-page: 250 year: 2002 ident: 10.1016/j.ceramint.2019.01.210_bib28 article-title: Microwave dielectric properties of Ba2−xSm4+2/3xTi9O26 ceramics with zero temperature coefficient publication-title: Mater. Sci. Eng., A doi: 10.1016/S0921-5093(01)01811-1 – volume: 199 start-page: 43 year: 2017 ident: 10.1016/j.ceramint.2019.01.210_bib8 article-title: Structure, microwave properties and low temperature sintering of Ta2O5 and Co2O3 codoped Zn0.5Ti0.5NbO4 ceramics publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.06.025 – volume: 22 start-page: 21412 year: 2012 ident: 10.1016/j.ceramint.2019.01.210_bib31 article-title: Phase evolution, phase transition, and microwave dielectric properties of scheelite structured xBi(Fe1/3Mo2/3)O4–(1−x)BiVO4 (0.0 ≤ x ≤ 1.0) low temperature firing ceramics publication-title: J. Mater. Chem. doi: 10.1039/c2jm34603f – volume: 94 start-page: 2506 year: 2011 ident: 10.1016/j.ceramint.2019.01.210_bib15 article-title: Structural evolution and its effects on dielectric loss in Sr1+xSm1−xAl1−xTixO4 microwave dielectric ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2011.04408.x – volume: 6 start-page: 9290 year: 2018 ident: 10.1016/j.ceramint.2019.01.210_bib33 article-title: BiVO4 based high k microwave dielectric materials: a review publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02260G – volume: 92 start-page: 1845 year: 2009 ident: 10.1016/j.ceramint.2019.01.210_bib7 article-title: Reduced dielectric loss of modified ZnNb2O6 ceramics by substituting Nb5+ with Ta5+ publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03077.x – volume: 13 start-page: 3893 year: 2001 ident: 10.1016/j.ceramint.2019.01.210_bib16 article-title: High internal stresses in Sr1-xLa1+xAl1-xMgxO4 solid solution (0 ≤ x ≤ 0.7) characterized by infrared and Raman spectroscopies coupled with crystal structure refinement publication-title: Chem. Mater. doi: 10.1021/cm001209e – volume: 38 start-page: 1556 year: 2018 ident: 10.1016/j.ceramint.2019.01.210_bib20 article-title: Crystal structure, impedance and broadband dielectric spectra of ordered scheelite-structured Bi(Sc1/3Mo2/3)O4 ceramic publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.12.044 – volume: 76 start-page: 155 year: 2003 ident: 10.1016/j.ceramint.2019.01.210_bib23 article-title: Bilbao crystallographic server : useful databases and tools for phase-transition studies publication-title: Phase Transitions doi: 10.1080/0141159031000076110 – volume: 693 start-page: 792 year: 2017 ident: 10.1016/j.ceramint.2019.01.210_bib18 article-title: Investigation and characterization on crystal structure of ixiolite structure ATiNb2O8 (A = Mg, Zn) ceramics at microwave frequency based on the complex chemical bond theory publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2016.09.281 – volume: 20 start-page: 4092 year: 2008 ident: 10.1016/j.ceramint.2019.01.210_bib17 article-title: Structural dependence of microwave dielectric properties of SrRAlO4 (R = Sm, Nd, La) ceramics: crystal structure refinement and infrared reflectivity study publication-title: Chem. Mater. doi: 10.1021/cm703273z – volume: 20 start-page: 2919 year: 2011 ident: 10.1016/j.ceramint.2019.01.210_bib25 article-title: Low loss dielectrics in Ba[(Mg1/3Ta2/3)1−xTix]O3 and Ba[(Mg1−xZnx)1/3Ta2/3]O3 systems, publication-title: J. Mater. Res. doi: 10.1557/JMR.2005.0384 – volume: 35 start-page: 5145 year: 1996 ident: 10.1016/j.ceramint.2019.01.210_bib34 article-title: Dielectric Properties of C a 1- x S m 2 x/3 T i O 3 – L i 1/2 L n 1/2 T i O 3 Ceramics publication-title: Jpn. J. Appl. Phys. – volume: 43 start-page: 15567 year: 2017 ident: 10.1016/j.ceramint.2019.01.210_bib9 article-title: Crystal structure and microwave dielectric properties of Ta5+ substituted MgZrNb2O8 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.08.109 – volume: 95 start-page: 2587 year: 2012 ident: 10.1016/j.ceramint.2019.01.210_bib11 article-title: Relationship between bond ionicity, lattice energy, and microwave dielectric properties of Zn(Ta1−xNbx)2O6 ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2012.05231.x – volume: 98 year: 2005 ident: 10.1016/j.ceramint.2019.01.210_bib27 article-title: Vibrational spectroscopy and microwave dielectric properties of Ca5−xBaxNb2TiO12 and Ca5−xBaxTa2TiO12 ceramics publication-title: J. Appl. Phys. doi: 10.1063/1.2112179 – volume: 83 start-page: 2721 year: 2000 ident: 10.1016/j.ceramint.2019.01.210_bib32 article-title: Chemical compatibility between silver electrodes and low-firing binary-oxide compounds: conceptual study publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2000.tb01623.x – volume: 21 start-page: 1723 year: 2001 ident: 10.1016/j.ceramint.2019.01.210_bib29 article-title: Structure–microwave property relations in (SrxCa(1−x))n+1TinO3n+1 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/S0955-2219(01)00102-9 – volume: 40 start-page: 5994 year: 2001 ident: 10.1016/j.ceramint.2019.01.210_bib3 article-title: Phase constitutions and microwave dielectric properties of Zn 3 Nb 2 O 8 –TiO 2 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.40.5994 – volume: 44 start-page: 8072 year: 2018 ident: 10.1016/j.ceramint.2019.01.210_bib6 article-title: Effects of Li2O-B2O3-SiO2 glass on the low-temperature sintering of Zn0.15Nb0.3Ti0.55O2 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.01.249 – start-page: 100 year: 1991 ident: 10.1016/j.ceramint.2019.01.210_bib24 article-title: Structural chemistry and Raman spectra of niobium oxides publication-title: Chem. Mater. doi: 10.1021/cm00013a025 – volume: 23 start-page: 2549 year: 2003 ident: 10.1016/j.ceramint.2019.01.210_bib30 article-title: Phase analysis and microwave dielectric properties of LTCC TiO2 with glass system publication-title: J. Eur. Ceram. Soc. doi: 10.1016/S0955-2219(03)00144-4 – volume: 42 start-page: 7681 year: 2016 ident: 10.1016/j.ceramint.2019.01.210_bib22 article-title: Relationship of the structural phase transition and microwave dielectric properties in MgZrNb2O8–TiO2 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.01.182 – volume: 44 start-page: 6601 year: 2018 ident: 10.1016/j.ceramint.2019.01.210_bib2 article-title: Sintering behavior, phase evolutions and microwave dielectric properties of LaGaO3-SrTiO3 ceramics modified by CeO2 additives publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.01.063 – volume: 58 start-page: 968 year: 2019 ident: 10.1016/j.ceramint.2019.01.210_bib19 article-title: Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics publication-title: lnorg. Chem. doi: 10.1021/acs.inorgchem.8b03169 – volume: 662 start-page: 455 year: 2016 ident: 10.1016/j.ceramint.2019.01.210_bib13 article-title: High-Q microwave dielectric ceramics using Zn3Nb1.88Ta0.12O8 solid solutions publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2015.12.082 – volume: 57 start-page: 8264 year: 2018 ident: 10.1016/j.ceramint.2019.01.210_bib5 article-title: Structural evolution and microwave dielectric properties of xZn0.5Ti0.5NbO4-(1–x)Zn0.15Nb0.3Ti0.55O2 ceramics publication-title: lnorg. Chem. doi: 10.1021/acs.inorgchem.8b00873 – volume: 694 start-page: 40 year: 2017 ident: 10.1016/j.ceramint.2019.01.210_bib21 article-title: Structure, Raman spectra, far-infrared spectra and microwave dielectric properties of temperature independent CeVO4TiO2 composite ceramics publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2016.09.327 |
| SSID | ssj0016940 |
| Score | 2.2234805 |
| Snippet | In the present study, influences of Ta5+ substitution on Nb site on crystal structural evolution, Raman spectra and microwave dielectric properties of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 8832 |
| SubjectTerms | Ceramic Dielectric properties Ta2O5 Zn0.15Nb0.3Ti0.55O2 |
| Title | Bond ionicity, lattice energy and structural evolution of Ta substituted 0.15ZnO-0.15Nb2O5-0.55TiO2 dielectric ceramics |
| URI | https://dx.doi.org/10.1016/j.ceramint.2019.01.210 |
| Volume | 45 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK5i3OQH3kJGbq7tx2kaGgi1SATU8RLZjjM6Vem0bt34Zfw9zomdC6JoIMRLmlpy6_h8Ofl8cs5nQl4aZcrICB1GplRhViZxCFBO4cZjNlI6S0VT5fr5PZ9MxGwmP4xG39tamPWC17W4upKn_9XU0AbGxtLZvzB396PQAOdgdDiC2eH4R4bHjYIDjLIaL_i_UOeY4RZYV-bXRMob1dhGccOu_WiQNuYqWIEncekDZYARoS_1NMTPiU6mDM4Yy-dTjNm6DXTmJjD2DDe1Xw157r5va-Qouohjn0vgnN2RurTzX0PXXy8GBWpHvvVwWR9_u9jUCrDzj18fvcCCKTaMXnRlNX0OE3q-hIObFk52a9c6z4wISqVTIW9dt1Oi9BDlAz8shI-a2var3Pi8cKGLk103UzUm18YSdVwTn2z7sxb3RxwZDgxoL5AfKW-Q7YQzCe50e-_twexd9wJrLDMX3vNXMihO3_xvm3nRgOvkd8kdv0ihew5c98jI1vfJ7YF05QNyiTCjLcxeUQ8y6kBGAWS0BxntQEaXFc0VHYCM_h5ktAcZbUH2kHx6c5DvH4Z-E4_QxIxHobSKayuVYKqMVZqISqWxBt6sM6W4Ab5dWWtgGZAxiV6jirnisVWy1FopYPOPyFa9rO1jQjVPgdJlVuhKZeVYA9OMxiaCJT-3Iov4DmHtFBbGK9zjRiuLok1lPCnaqS9w6osoLmDqd8jrrt-p03i5todsLVR4puoYaAHAuqbvk3_o-5Tc6m-iZ2QL7Gifk5tmfT5fnb3wGPwBkcu8Ig |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bond+ionicity%2C+lattice+energy+and+structural+evolution+of+Ta+substituted+0.15ZnO-0.15Nb2O5-0.55TiO2+dielectric+ceramics&rft.jtitle=Ceramics+international&rft.au=Chen%2C+Yawei&rft.au=Zhang%2C+Shuren&rft.au=Yang%2C+Hongyu&rft.au=Yang%2C+Hongcheng&rft.date=2019-05-01&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=45&rft.issue=7&rft.spage=8832&rft.epage=8839&rft_id=info:doi/10.1016%2Fj.ceramint.2019.01.210&rft.externalDocID=S0272884219302299 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |