Asynchronous Distributed Algorithms for Static and Dynamic Directed Rooted Graphs
The paper provides a review of distributed graph algorithms research conducted by authors. We consider an asynchronous distributed system model represented by a strongly connected directed rooted graph with bounded edge capacity (in a sense that only a bounded number of messages can be sent through...
Uloženo v:
| Vydáno v: | Trudy Instituta sistemnogo programmirovaniâ Ročník 30; číslo 1; s. 69 - 88 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Russian Academy of Sciences, Ivannikov Institute for System Programming
01.10.2018
|
| Témata: | |
| ISSN: | 2079-8156, 2220-6426 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The paper provides a review of distributed graph algorithms research conducted by authors. We consider an asynchronous distributed system model represented by a strongly connected directed rooted graph with bounded edge capacity (in a sense that only a bounded number of messages can be sent through an edge in a given time interval). A graph can be static or dynamic, i.e. changing. For a static graph we propose a spanning (in- and out-) tree construction algorithm of time complexity O ( n / k + d ), requiring O ( n d log D+) message size and the same size of memory of each computing agent located in graph vertex, where n is the number of vertices of the graph, k is the capacity of an edge, d is the maximum length of simple path in the graph, D+ is the maximum outdegree of the vertices. The spanning trees constructed can be used in distributed computation of a function of the multiset of values assigned to graph vertices in a time not greater than 3 d . In a dynamic graph we suppose that k = 1 and an edge can appear, disappear, or change its end. We propose a dynamic graph monitoring algorithm than delivers information on any change to the root of the graph in O (n) or O ( d ) after the changes are stopped. We also propose graph exploration and marking algorithm with time complexity O ( n ). The marking provided by it is used in distributed computation of a function of the multiset of values assigned to dynamic graph vertices, which can be performed in time O ( n2) with messages of size O ( log n ) or in time O ( n ) with messages of size O ( n log n ). |
|---|---|
| ISSN: | 2079-8156 2220-6426 |
| DOI: | 10.15514/ISPRAS-2018-30(1)-5 |