Multi-Microgrid Energy Trading Strategy Based on Multi-Agent Deep Deterministic Policy Gradient Algorithm
Compared to individual microgrid, multi-microgrid (MMG) system can enhance the overall utilization of renewable energy, effectively improve the operational stability of local microgrids, and reduce the dependence on main grid. However, energy management of MMG encounters significant challenges due t...
Gespeichert in:
| Veröffentlicht in: | Applied mathematics and nonlinear sciences Jg. 9; H. 1 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Beirut
Sciendo
01.01.2024
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Schlagworte: | |
| ISSN: | 2444-8656, 2444-8656 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Compared to individual microgrid, multi-microgrid (MMG) system can enhance the overall utilization of renewable energy, effectively improve the operational stability of local microgrids, and reduce the dependence on main grid. However, energy management of MMG encounters significant challenges due to the complex interaction between different microgrids. To tackle this issue, this paper introduces a non-cooperative gamebased optimal scheduling market trading model for MMG composed of various renewable energy sources, completing trade decisions while ensuring information independence. Considering the real-time changes in environmental transition functions and complex scheduling scenarios, the multi-agent deep deterministic policy gradient (MADDPG) algorithm is employed, which modifies the experience replay mechanism and Markov process of the basic deep deterministic policy gradient (DDPG) algorithm. Compared to traditional multi-microgrid system scheduling algorithms, the method presented in this paper does not require individual predictions of state variables, achieves end-to-end training from agent states to actions, and ensures the information security and autonomous decision-making of each microgrid. |
|---|---|
| AbstractList | Compared to individual microgrid, multi-microgrid (MMG) system can enhance the overall utilization of renewable energy, effectively improve the operational stability of local microgrids, and reduce the dependence on main grid. However, energy management of MMG encounters significant challenges due to the complex interaction between different microgrids. To tackle this issue, this paper introduces a non-cooperative gamebased optimal scheduling market trading model for MMG composed of various renewable energy sources, completing trade decisions while ensuring information independence. Considering the real-time changes in environmental transition functions and complex scheduling scenarios, the multi-agent deep deterministic policy gradient (MADDPG) algorithm is employed, which modifies the experience replay mechanism and Markov process of the basic deep deterministic policy gradient (DDPG) algorithm. Compared to traditional multi-microgrid system scheduling algorithms, the method presented in this paper does not require individual predictions of state variables, achieves end-to-end training from agent states to actions, and ensures the information security and autonomous decision-making of each microgrid. |
| Author | Xu, Jiang Qi, Genhong Wang, Meng Fu, Lingxiao Yuan, Shaoqing Zhu, Mingcheng |
| Author_xml | – sequence: 1 givenname: Genhong surname: Qi fullname: Qi, Genhong organization: Inner Mongolia Power (Group) CO., LTD – sequence: 2 givenname: Lingxiao surname: Fu fullname: Fu, Lingxiao organization: Inner Mongolia Power Marketing Services Company – sequence: 3 givenname: Meng surname: Wang fullname: Wang, Meng organization: Inner Mongolia Power Exchange Center – sequence: 4 givenname: Mingcheng surname: Zhu fullname: Zhu, Mingcheng email: zhumingcheng123@126.com organization: Inner Mongolia Power (Group) CO., LTD – sequence: 5 givenname: Shaoqing surname: Yuan fullname: Yuan, Shaoqing organization: Inner Mongolia Power Group Inner Mongolia Power Electric Operations Control Company – sequence: 6 givenname: Jiang surname: Xu fullname: Xu, Jiang organization: Inner Mongolia Power Exchange Center |
| BookMark | eNptkMFLwzAUxoMoOOeungOeO5M0TdrjnHMKGwrOc0nb15rRpjNpkf73plTQg5f3PsL3e-H7rtC5aQ0gdEPJknEZ36nGuIARxoOQM3GGZoxzHsQiEud_9CVaOHckhLCQhkKwGdL7vu50sNe5bSurC7wxYKsBH6wqtKnwW2dVB_7hXjkocGvwBKwqMB1-ADj50YFttNGu0zl-bWudD3g78qNlVVet1d1Hc40uSlU7WPzsOXp_3BzWT8HuZfu8Xu2CnEaCBmVYxryMSuJTAU8yzgVVmSgjymUmEykikEqWRUaBFAUUoReKx5RQCpJAHM7R7XT3ZNvPHlyXHtveGv9lGtKEMiaYlN61nFw-t3MWyvRkdaPskFKSjo2mY6Pp2Gg6NuqBeAK-VO3zFlDZfvDi9_r_YELDb6xVfs8 |
| Cites_doi | 10.1109/TASC.2024.3420296 10.1038/s41467-023-40670-7 10.1016/j.epsr.2022.109089 10.1109/TSG.2019.2896182 10.1016/j.apenergy.2022.119151 10.3390/su142214794 10.1109/TIA.2022.3218022 10.1016/j.energy.2020.117180 10.1007/s12083-024-01681-3 10.1109/TIM.2023.3301904 10.1109/JSYST.2023.3315190 10.1109/JIOT.2019.2921159 10.1109/TASE.2023.3236408 10.1109/TPWRS.2022.3162473 10.1016/j.jclepro.2023.140130 |
| ContentType | Journal Article |
| Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.2478/amns-2024-3426 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2444-8656 |
| ExternalDocumentID | 10_2478_amns_2024_3426 10_2478_amns_2024_342691 |
| GroupedDBID | 9WM AATOW ABFKT ADBLJ AFFHD AFKRA AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BENPR CCPQU EBS M~E OK1 PHGZM PHGZT PIMPY QD8 SLJYH AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c1561-f3f84f5f0478e49b4461ab6f5147b79765e7a7fdb1e0dded3b1ea481011e70e83 |
| IEDL.DBID | PIMPY |
| ISSN | 2444-8656 |
| IngestDate | Sun Oct 19 01:25:18 EDT 2025 Sat Nov 29 05:04:58 EST 2025 Sat Nov 29 01:26:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1561-f3f84f5f0478e49b4461ab6f5147b79765e7a7fdb1e0dded3b1ea481011e70e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3191226277?pq-origsite=%requestingapplication% |
| PQID | 3191226277 |
| PQPubID | 6761185 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_3191226277 crossref_primary_10_2478_amns_2024_3426 walterdegruyter_journals_10_2478_amns_2024_342691 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Beirut |
| PublicationPlace_xml | – name: Beirut |
| PublicationTitle | Applied mathematics and nonlinear sciences |
| PublicationYear | 2024 |
| Publisher | Sciendo De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Publisher_xml | – name: Sciendo – name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| References | 2024121221430981065_j_amns-2024-3426_ref_007 2024121221430981065_j_amns-2024-3426_ref_018 2024121221430981065_j_amns-2024-3426_ref_006 2024121221430981065_j_amns-2024-3426_ref_017 2024121221430981065_j_amns-2024-3426_ref_009 2024121221430981065_j_amns-2024-3426_ref_008 2024121221430981065_j_amns-2024-3426_ref_019 2024121221430981065_j_amns-2024-3426_ref_003 2024121221430981065_j_amns-2024-3426_ref_014 2024121221430981065_j_amns-2024-3426_ref_002 2024121221430981065_j_amns-2024-3426_ref_013 2024121221430981065_j_amns-2024-3426_ref_024 2024121221430981065_j_amns-2024-3426_ref_005 2024121221430981065_j_amns-2024-3426_ref_016 2024121221430981065_j_amns-2024-3426_ref_004 2024121221430981065_j_amns-2024-3426_ref_015 2024121221430981065_j_amns-2024-3426_ref_010 2024121221430981065_j_amns-2024-3426_ref_021 2024121221430981065_j_amns-2024-3426_ref_020 2024121221430981065_j_amns-2024-3426_ref_001 2024121221430981065_j_amns-2024-3426_ref_012 2024121221430981065_j_amns-2024-3426_ref_023 2024121221430981065_j_amns-2024-3426_ref_011 2024121221430981065_j_amns-2024-3426_ref_022 |
| References_xml | – ident: 2024121221430981065_j_amns-2024-3426_ref_016 – ident: 2024121221430981065_j_amns-2024-3426_ref_004 doi: 10.1109/TASC.2024.3420296 – ident: 2024121221430981065_j_amns-2024-3426_ref_005 doi: 10.1038/s41467-023-40670-7 – ident: 2024121221430981065_j_amns-2024-3426_ref_009 doi: 10.1016/j.epsr.2022.109089 – ident: 2024121221430981065_j_amns-2024-3426_ref_015 – ident: 2024121221430981065_j_amns-2024-3426_ref_017 – ident: 2024121221430981065_j_amns-2024-3426_ref_018 – ident: 2024121221430981065_j_amns-2024-3426_ref_014 doi: 10.1109/TSG.2019.2896182 – ident: 2024121221430981065_j_amns-2024-3426_ref_019 doi: 10.1016/j.apenergy.2022.119151 – ident: 2024121221430981065_j_amns-2024-3426_ref_013 – ident: 2024121221430981065_j_amns-2024-3426_ref_012 – ident: 2024121221430981065_j_amns-2024-3426_ref_001 doi: 10.3390/su142214794 – ident: 2024121221430981065_j_amns-2024-3426_ref_002 doi: 10.1109/TIA.2022.3218022 – ident: 2024121221430981065_j_amns-2024-3426_ref_008 doi: 10.1016/j.energy.2020.117180 – ident: 2024121221430981065_j_amns-2024-3426_ref_021 doi: 10.1007/s12083-024-01681-3 – ident: 2024121221430981065_j_amns-2024-3426_ref_003 doi: 10.1109/TIM.2023.3301904 – ident: 2024121221430981065_j_amns-2024-3426_ref_010 doi: 10.1109/JSYST.2023.3315190 – ident: 2024121221430981065_j_amns-2024-3426_ref_022 – ident: 2024121221430981065_j_amns-2024-3426_ref_020 doi: 10.1109/JIOT.2019.2921159 – ident: 2024121221430981065_j_amns-2024-3426_ref_023 – ident: 2024121221430981065_j_amns-2024-3426_ref_024 – ident: 2024121221430981065_j_amns-2024-3426_ref_006 doi: 10.1109/TASE.2023.3236408 – ident: 2024121221430981065_j_amns-2024-3426_ref_007 doi: 10.1109/TPWRS.2022.3162473 – ident: 2024121221430981065_j_amns-2024-3426_ref_011 doi: 10.1016/j.jclepro.2023.140130 |
| SSID | ssj0002313662 |
| Score | 2.2424357 |
| Snippet | Compared to individual microgrid, multi-microgrid (MMG) system can enhance the overall utilization of renewable energy, effectively improve the operational... |
| SourceID | proquest crossref walterdegruyter |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | 68T07 Algorithms Alternative energy sources deep reinforcement learning energy scheduling energy trading multi-agent deep deterministic policy gradient multi-microgrid Renewable resources |
| Title | Multi-Microgrid Energy Trading Strategy Based on Multi-Agent Deep Deterministic Policy Gradient Algorithm |
| URI | https://reference-global.com/article/10.2478/amns-2024-3426 https://www.proquest.com/docview/3191226277 |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: PIMPY dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH4aLQcusPFDFBjyYRInq3HsxOkJla1sk0ZVTUOCUxTHTqkEaUkCiP9-z467IoQ47ZAoB8eK8j2_99l-7zPAl1jbMMkUDfM8pkIlMVVSSqrQOlRk4oHQTjL_lxyPk6urwcSXR9c-rXLpE52jbtWebd42OuG-nud2xbyPhsOQOIRSni7uqT1Dyu61-gM11qBrhbeCDnQnPy8m1__WXJDL8DgOW-3GUMikn92VNRpKKCgXVl_hZWxaEc7NJ7d1rc20enhullulLgKdb_3fb_8Im56JkmFrOp_ggym3YcuzUuLHfL0DM1ejSy9s5t60mmkycuWCBKOcjXvE69s-kzMMiJrMS9K-MLRFW-SbMQu8tTk3ThSatFLE5Hvlss0aMryd4uc1N3e7cHk--vP1B_UHNNAcp32MFrxIRBEVVuHHiIHCqSXLVFwgCZNKItGJjMxkoRUzAbpRzfEhE1ZSjBkZmITvQaecl2YfSJAXWuogNhHPBc-EwotFRY6NuOE66MHJEpp00epwpDh_sSCmFsTUgphaEHtwtAQh9eOxTlf_vAfsFZqrVm93OGAH73d5CBvOhNzCzBF0murBfIb1_LGZ1dUxdM9G48nvY2-MfwHwkvF0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH9iZdK4wL4QZWzzAbSTRRw7cXtAqHyNirbqgUnslMWxUypBWpIA6j-1v5FnJ1mnadqNww6JcnAc2e-X92G_9zPAbqitmWSK-kkSUqE6IVVSSqoQHSowYVdoR5k_kKNR5-qqO16Bn00tjE2rbHSiU9R6ltg18n2ECkNXwZfycH5H7alRdne1OUKjgsWFWTxiyFYc9E9Qvnu-f3Z6eXxO61MFaIKxCqMpTzsiDVJLS2NEV2E8xGIVpug5SCXROgdGxjLVihkP_33N8SEWlgeLGemZDsd-X8CqQLB7LVgd94fj779WddBb4mHoV-yQPn5hP77NCoSiLygXlsHhd-u3dGnXH93muDaT_H5RNpuxzsadbfxvs_Ma1mtvmvQq-L-BFZO9hY3asya13irewdTVGdOhzT6c5FNNTl3JI0FLbW03qTl6F-QIjboms4xUL_Rs4Rk5MWaOtypvyBFbk4pOmXzNXcZcSXo3E5yO8vr2PXx7lgFvQiubZWYLiJekWmovNAFPBI-FwosFaYKNuOHaa8OXRvjRvOISiTAGszCJLEwiC5PIwqQNO42Yo1qnFNFSxm1gf-Bl2ervHXbZ9r-7_Ayvzi-Hg2jQH118gDUHWLfQtAOtMr83H-Fl8lBOi_xTDXkCP54bR08KuED_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Microgrid+Energy+Trading+Strategy+Based+on+Multi-Agent+Deep+Deterministic+Policy+Gradient+Algorithm&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Qi%2C+Genhong&rft.au=Fu%2C+Lingxiao&rft.au=Wang%2C+Meng&rft.au=Zhu%2C+Mingcheng&rft.date=2024-01-01&rft.pub=Sciendo&rft.eissn=2444-8656&rft.volume=9&rft.issue=1&rft_id=info:doi/10.2478%2Famns-2024-3426&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2024_342691 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon |