L 0-regularization for high-dimensional regression with corrupted data
Corrupted data appears widely in many contemporary applications including voting behavior, high-throughput sequencing and sensor networks. In this article, we consider the sparse modeling via L 0 -regularization under the framework of high-dimensional measurement error models. By utilizing the techn...
Saved in:
| Published in: | Communications in statistics. Theory and methods Vol. 53; no. 1; pp. 215 - 231 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
02.01.2024
|
| Subjects: | |
| ISSN: | 0361-0926, 1532-415X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Corrupted data appears widely in many contemporary applications including voting behavior, high-throughput sequencing and sensor networks. In this article, we consider the sparse modeling via L
0
-regularization under the framework of high-dimensional measurement error models. By utilizing the techniques of the nearest positive semi-definite matrix projection, the resulting regularization problem can be efficiently solved through a polynomial algorithm. Under some interpretable conditions, we prove that the proposed estimator can enjoy comprehensive statistical properties including the model selection consistency and the oracle inequalities. In particular, the nonoptimality of the logarithmic factor of dimensionality will be showed in the oracle inequalities. We demonstrate the effectiveness of the proposed method by simulation studies. |
|---|---|
| AbstractList | Corrupted data appears widely in many contemporary applications including voting behavior, high-throughput sequencing and sensor networks. In this article, we consider the sparse modeling via L
0
-regularization under the framework of high-dimensional measurement error models. By utilizing the techniques of the nearest positive semi-definite matrix projection, the resulting regularization problem can be efficiently solved through a polynomial algorithm. Under some interpretable conditions, we prove that the proposed estimator can enjoy comprehensive statistical properties including the model selection consistency and the oracle inequalities. In particular, the nonoptimality of the logarithmic factor of dimensionality will be showed in the oracle inequalities. We demonstrate the effectiveness of the proposed method by simulation studies. |
| Author | Zhao, Ni Zhang, Jie Li, Yang Zheng, Zemin |
| Author_xml | – sequence: 1 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: International Institute of Finance, School of Management, University of Science and Technology of China – sequence: 2 givenname: Yang surname: Li fullname: Li, Yang organization: International Institute of Finance, School of Management, University of Science and Technology of China – sequence: 3 givenname: Ni surname: Zhao fullname: Zhao, Ni organization: School of Mathematics and Physics Sciences, Anhui Jianzhu University – sequence: 4 givenname: Zemin surname: Zheng fullname: Zheng, Zemin organization: International Institute of Finance, School of Management, University of Science and Technology of China |
| BookMark | eNqFkM9KAzEQh4NUsK0-gpAX2Jo_m2wWL0qxKhS89OAtZCfZNrLdlGRLqU_vrq0XD3qZYYbfNzDfBI3a0DqEbimZUaLIHeGSkpLJGSOM9aWQlIkLNKaCsyyn4n2ExkMmG0JXaJLSByFUFIqP0WKJSRbdet-Y6D9N50OL6xDxxq83mfVb16Z-ZRrcZ6JLw4APvttgCDHud52z2JrOXKPL2jTJ3Zz7FK0WT6v5S7Z8e36dPy4zoEKIDBRInoNTYFTJHKjCiYpbR60VYKucOMWlMpKWDFgNvJBQVYVlRUmgEIJPkTidhRhSiq7Wu-i3Jh41JXpwoX9c6MGFPrvouftfHPju-9kuGt_8Sz-caN_2arbmEGJjdWeOTYh1NC34pPnfJ74AYvR6mg |
| CitedBy_id | crossref_primary_10_1007_s12190_024_02353_4 crossref_primary_10_3390_math11143202 |
| Cites_doi | 10.3150/09-BEJ205 10.1214/10-AOS793 10.1214/15-AOS1388 10.1093/biomet/ast047 10.1214/12-IMSCOLL920 10.1214/16-AOS1527 10.1214/009053606000001523 10.1111/rssb.12037 10.1214/08-AOS620 10.1007/s11222-010-9219-7 10.1016/j.csda.2018.04.009 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.acha.2014.10.001 10.1214/12-AOS1018 10.1198/016214501753382273 10.1073/pnas.2014241117 |
| ContentType | Journal Article |
| Copyright | 2022 Taylor & Francis Group, LLC 2022 |
| Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/03610926.2022.2076125 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1532-415X |
| EndPage | 231 |
| ExternalDocumentID | 10_1080_03610926_2022_2076125 2076125 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF TWZ UPT UT5 UU3 WH7 ZGOLN ZL0 ~02 ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c1555-c8c634ce8ca892ec87e5b3de1dd5cdb40e8368a6192c2fc376cbb7d2790c7553 |
| IEDL.DBID | TFW |
| ISSN | 0361-0926 |
| IngestDate | Tue Nov 18 21:56:49 EST 2025 Sat Nov 29 01:54:17 EST 2025 Mon Oct 20 23:45:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1555-c8c634ce8ca892ec87e5b3de1dd5cdb40e8368a6192c2fc376cbb7d2790c7553 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1080_03610926_2022_2076125 crossref_citationtrail_10_1080_03610926_2022_2076125 informaworld_taylorfrancis_310_1080_03610926_2022_2076125 |
| PublicationCentury | 2000 |
| PublicationDate | 1/2/2024 2024-01-02 |
| PublicationDateYYYYMMDD | 2024-01-02 |
| PublicationDate_xml | – month: 01 year: 2024 text: 1/2/2024 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | Communications in statistics. Theory and methods |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_18_1 e_1_3_2_7_1 Sørensen Ø. (e_1_3_2_16_1) 2015; 25 Huang J. (e_1_3_2_10_1) 2018; 19 e_1_3_2_2_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_11_1 e_1_3_2_22_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 Ruppert R. D. (e_1_3_2_5_1) 1995 Fan J. (e_1_3_2_8_1) 2010; 20 Zhang C.-H. (e_1_3_2_19_1) 2012; 27 |
| References_xml | – volume: 27 start-page: 576 issue: 4 year: 2012 ident: e_1_3_2_19_1 article-title: A general theory of concave regularization for high-dimensional sparse estimation problems publication-title: Statistica Sinica – ident: e_1_3_2_13_1 doi: 10.3150/09-BEJ205 – ident: e_1_3_2_15_1 doi: 10.1214/10-AOS793 – volume: 19 start-page: 1 issue: 10 year: 2018 ident: e_1_3_2_10_1 article-title: A constructive approach to l 0 penalized regression publication-title: Journal of Machine Learning Research – volume: 25 start-page: 809 year: 2015 ident: e_1_3_2_16_1 article-title: Measurement error in lasso: Impact and correction publication-title: Statistica Sinica – ident: e_1_3_2_2_1 doi: 10.1214/15-AOS1388 – volume: 20 start-page: 101 issue: 1 year: 2010 ident: e_1_3_2_8_1 article-title: A selective overview of variable selection in high dimensional feature space publication-title: Statistica Sinica – ident: e_1_3_2_9_1 doi: 10.1093/biomet/ast047 – volume-title: Measurement error in nonlinear models year: 1995 ident: e_1_3_2_5_1 – ident: e_1_3_2_14_1 doi: 10.1214/12-IMSCOLL920 – ident: e_1_3_2_6_1 doi: 10.1214/16-AOS1527 – ident: e_1_3_2_4_1 doi: 10.1214/009053606000001523 – ident: e_1_3_2_20_1 doi: 10.1111/rssb.12037 – ident: e_1_3_2_3_1 doi: 10.1214/08-AOS620 – ident: e_1_3_2_17_1 doi: 10.1007/s11222-010-9219-7 – ident: e_1_3_2_21_1 doi: 10.1016/j.csda.2018.04.009 – ident: e_1_3_2_18_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_3_2_11_1 doi: 10.1016/j.acha.2014.10.001 – ident: e_1_3_2_12_1 doi: 10.1214/12-AOS1018 – ident: e_1_3_2_7_1 doi: 10.1198/016214501753382273 – ident: e_1_3_2_22_1 doi: 10.1073/pnas.2014241117 |
| SSID | ssj0015783 |
| Score | 2.3324518 |
| Snippet | Corrupted data appears widely in many contemporary applications including voting behavior, high-throughput sequencing and sensor networks. In this article, we... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 215 |
| SubjectTerms | Measurement errors model selection nearest positive semi-definite matrix projection polynomial algorithm regularization |
| Title | L 0-regularization for high-dimensional regression with corrupted data |
| URI | https://www.tandfonline.com/doi/abs/10.1080/03610926.2022.2076125 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1532-415X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015783 issn: 0361-0926 databaseCode: TFW dateStart: 19760101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxVAGHgVEeckDq8F52LFHhIgYoGKoRLcots8TClXa8vuxY6dqB2CAMVIuss7ne-X8fQjd-BSBCaDEGpAkh0QRRRNDcmNqDlYozuuObKKYTMRsJl_jNOEijlX6GtoGoIjOV_vDXatFPxF355xuQmXqBwxSf5eq8FHaeWEX-j2HwbR8W_9HcPYYCJK5K5qdSH-H57uvbEWnLezSjahTHvzDeg_Rfkw58X2wkSO0A80I7b2s8VoXIzT0OWeAbD5G5TOmpO046tt4SxO7FWKPbEyMZwMISB7YvROmaBvs27nYFbLtau5SWOznTk_QtHycPjyRSLdAtEsqGNFC8yzXIHQtZApaFMBUZiAxhmmjcgoi46L2FZdOrXaeSStVmLSQVBeMZado0Hw0cIYwZxZSTRUXWuZgWQ1UCW0LyK2yVskxynstVzpCkXtGjPcq6RFLo8oqr7IqqmyMbtdi84DF8ZuA3NzCatk1QWxgLKmyH2XP_yB7gYbuMe86NeklGizbFVyhXf3pdrK97iz0C_814hg |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BQaIMvBHl6YHVkJcTZ0SIqIi2UyS6RfFrQqEKLb8fX5xU7QAMMCcXWeez75G77wO4xRCBce1Ro3RKI-0LKjxf0UipMtaGizguG7KJZDLh02m6OguDbZWYQxsHFNHc1Xi4sRjdtcTd21vX99IAOwwCHKZK0E1vwhazvhatPM9el38SrEU6iuTYps1Wppvi-e4za_5pDb10xe9k-_-x4gPYa6NO8uDM5BA2dHUEu-MlZOvHEfQx7HSozceQjYhH64amvm4HNYldIkFwY6qQEMCBeRD7jmukrQhWdInNZevFzEaxBFtPTyDPnvLHIW0ZF6i0cQWjkss4jKTmsuRpoCVPNBOh0r5STCoReZqHMS8x6ZKBkVbbUohEBUnqyYSx8BR61Xulz4DEzOhAeiLmMo20YaX2BJcm0ZERxoh0AFGn5kK2aORIivFW-B1oaauyAlVWtCobwN1SbObgOH4TSFf3sJg3dRDjSEuK8EfZ8z_I3sDOMB-PitHz5OUC-vZR1BRugkvozeuFvoJt-Wl3tb5uzPULZlzmQw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BQagMvBHl6YHVkKdjjwiIQJSqQyW6RfFrQqFKW34_duxU7QAMMCcXWefzvXL-PoBrmyKkVAVYS8VwokKOeRBKnEhZEqUpJ6RsyCaywYCOx2zopwmnfqzS1tDaAUU0vtoe7onU7UTcrXG6YcAiO2AQ2btUmY3S67BhUmdi669R_rb4kWAM0jEkE1M1G5n2Es93n1kJTyvgpUthJ9_9hwXvwY7POdGdM5J9WFPVAWy_LgBbpwfQtUmnw2w-hLyPAlw3JPW1v6aJzAqRhTbG0tIBOCgPZN5xY7QVsv1cZCrZej4xOSyyg6dHMMofR_dP2PMtYGGyihQLKkicCEVFSVmkBM1UymOpQilTIXkSKBoTWtqSS0RaGNckOM9klLFAZGkaH0On-qjUCSCSahWJgBMqWKJ0WqqAU6EzlWiuNWc9SFotF8JjkVtKjPcibCFLvcoKq7LCq6wHNwuxiQPj-E2ALW9hMWu6INpRlhTxj7Knf5C9gq3hQ170nwcvZ9A1T5KmaxOdQ2dWz9UFbIpPs6n1ZWOsX7qi5PQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L+0+-regularization+for+high-dimensional+regression+with+corrupted+data&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Zhang%2C+Jie&rft.au=Li%2C+Yang&rft.au=Zhao%2C+Ni&rft.au=Zheng%2C+Zemin&rft.date=2024-01-02&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=53&rft.issue=1&rft.spage=215&rft.epage=231&rft_id=info:doi/10.1080%2F03610926.2022.2076125&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610926_2022_2076125 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon |