L 0-regularization for high-dimensional regression with corrupted data

Corrupted data appears widely in many contemporary applications including voting behavior, high-throughput sequencing and sensor networks. In this article, we consider the sparse modeling via L 0 -regularization under the framework of high-dimensional measurement error models. By utilizing the techn...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in statistics. Theory and methods Ročník 53; číslo 1; s. 215 - 231
Hlavní autoři: Zhang, Jie, Li, Yang, Zhao, Ni, Zheng, Zemin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 02.01.2024
Témata:
ISSN:0361-0926, 1532-415X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Corrupted data appears widely in many contemporary applications including voting behavior, high-throughput sequencing and sensor networks. In this article, we consider the sparse modeling via L 0 -regularization under the framework of high-dimensional measurement error models. By utilizing the techniques of the nearest positive semi-definite matrix projection, the resulting regularization problem can be efficiently solved through a polynomial algorithm. Under some interpretable conditions, we prove that the proposed estimator can enjoy comprehensive statistical properties including the model selection consistency and the oracle inequalities. In particular, the nonoptimality of the logarithmic factor of dimensionality will be showed in the oracle inequalities. We demonstrate the effectiveness of the proposed method by simulation studies.
AbstractList Corrupted data appears widely in many contemporary applications including voting behavior, high-throughput sequencing and sensor networks. In this article, we consider the sparse modeling via L 0 -regularization under the framework of high-dimensional measurement error models. By utilizing the techniques of the nearest positive semi-definite matrix projection, the resulting regularization problem can be efficiently solved through a polynomial algorithm. Under some interpretable conditions, we prove that the proposed estimator can enjoy comprehensive statistical properties including the model selection consistency and the oracle inequalities. In particular, the nonoptimality of the logarithmic factor of dimensionality will be showed in the oracle inequalities. We demonstrate the effectiveness of the proposed method by simulation studies.
Author Zhao, Ni
Zhang, Jie
Li, Yang
Zheng, Zemin
Author_xml – sequence: 1
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: International Institute of Finance, School of Management, University of Science and Technology of China
– sequence: 2
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: International Institute of Finance, School of Management, University of Science and Technology of China
– sequence: 3
  givenname: Ni
  surname: Zhao
  fullname: Zhao, Ni
  organization: School of Mathematics and Physics Sciences, Anhui Jianzhu University
– sequence: 4
  givenname: Zemin
  surname: Zheng
  fullname: Zheng, Zemin
  organization: International Institute of Finance, School of Management, University of Science and Technology of China
BookMark eNqFkM9KAzEQh4NUsK0-gpAX2Jo_m2wWL0qxKhS89OAtZCfZNrLdlGRLqU_vrq0XD3qZYYbfNzDfBI3a0DqEbimZUaLIHeGSkpLJGSOM9aWQlIkLNKaCsyyn4n2ExkMmG0JXaJLSByFUFIqP0WKJSRbdet-Y6D9N50OL6xDxxq83mfVb16Z-ZRrcZ6JLw4APvttgCDHud52z2JrOXKPL2jTJ3Zz7FK0WT6v5S7Z8e36dPy4zoEKIDBRInoNTYFTJHKjCiYpbR60VYKucOMWlMpKWDFgNvJBQVYVlRUmgEIJPkTidhRhSiq7Wu-i3Jh41JXpwoX9c6MGFPrvouftfHPju-9kuGt_8Sz-caN_2arbmEGJjdWeOTYh1NC34pPnfJ74AYvR6mg
CitedBy_id crossref_primary_10_1007_s12190_024_02353_4
crossref_primary_10_3390_math11143202
Cites_doi 10.3150/09-BEJ205
10.1214/10-AOS793
10.1214/15-AOS1388
10.1093/biomet/ast047
10.1214/12-IMSCOLL920
10.1214/16-AOS1527
10.1214/009053606000001523
10.1111/rssb.12037
10.1214/08-AOS620
10.1007/s11222-010-9219-7
10.1016/j.csda.2018.04.009
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.acha.2014.10.001
10.1214/12-AOS1018
10.1198/016214501753382273
10.1073/pnas.2014241117
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
DBID AAYXX
CITATION
DOI 10.1080/03610926.2022.2076125
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-415X
EndPage 231
ExternalDocumentID 10_1080_03610926_2022_2076125
2076125
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
TWZ
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~02
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c1555-c8c634ce8ca892ec87e5b3de1dd5cdb40e8368a6192c2fc376cbb7d2790c7553
IEDL.DBID TFW
ISSN 0361-0926
IngestDate Tue Nov 18 21:56:49 EST 2025
Sat Nov 29 01:54:17 EST 2025
Mon Oct 20 23:45:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1555-c8c634ce8ca892ec87e5b3de1dd5cdb40e8368a6192c2fc376cbb7d2790c7553
PageCount 17
ParticipantIDs crossref_primary_10_1080_03610926_2022_2076125
crossref_citationtrail_10_1080_03610926_2022_2076125
informaworld_taylorfrancis_310_1080_03610926_2022_2076125
PublicationCentury 2000
PublicationDate 1/2/2024
2024-01-02
PublicationDateYYYYMMDD 2024-01-02
PublicationDate_xml – month: 01
  year: 2024
  text: 1/2/2024
  day: 02
PublicationDecade 2020
PublicationTitle Communications in statistics. Theory and methods
PublicationYear 2024
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_18_1
e_1_3_2_7_1
Sørensen Ø. (e_1_3_2_16_1) 2015; 25
Huang J. (e_1_3_2_10_1) 2018; 19
e_1_3_2_2_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_11_1
e_1_3_2_22_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
Ruppert R. D. (e_1_3_2_5_1) 1995
Fan J. (e_1_3_2_8_1) 2010; 20
Zhang C.-H. (e_1_3_2_19_1) 2012; 27
References_xml – volume: 27
  start-page: 576
  issue: 4
  year: 2012
  ident: e_1_3_2_19_1
  article-title: A general theory of concave regularization for high-dimensional sparse estimation problems
  publication-title: Statistica Sinica
– ident: e_1_3_2_13_1
  doi: 10.3150/09-BEJ205
– ident: e_1_3_2_15_1
  doi: 10.1214/10-AOS793
– volume: 19
  start-page: 1
  issue: 10
  year: 2018
  ident: e_1_3_2_10_1
  article-title: A constructive approach to l 0 penalized regression
  publication-title: Journal of Machine Learning Research
– volume: 25
  start-page: 809
  year: 2015
  ident: e_1_3_2_16_1
  article-title: Measurement error in lasso: Impact and correction
  publication-title: Statistica Sinica
– ident: e_1_3_2_2_1
  doi: 10.1214/15-AOS1388
– volume: 20
  start-page: 101
  issue: 1
  year: 2010
  ident: e_1_3_2_8_1
  article-title: A selective overview of variable selection in high dimensional feature space
  publication-title: Statistica Sinica
– ident: e_1_3_2_9_1
  doi: 10.1093/biomet/ast047
– volume-title: Measurement error in nonlinear models
  year: 1995
  ident: e_1_3_2_5_1
– ident: e_1_3_2_14_1
  doi: 10.1214/12-IMSCOLL920
– ident: e_1_3_2_6_1
  doi: 10.1214/16-AOS1527
– ident: e_1_3_2_4_1
  doi: 10.1214/009053606000001523
– ident: e_1_3_2_20_1
  doi: 10.1111/rssb.12037
– ident: e_1_3_2_3_1
  doi: 10.1214/08-AOS620
– ident: e_1_3_2_17_1
  doi: 10.1007/s11222-010-9219-7
– ident: e_1_3_2_21_1
  doi: 10.1016/j.csda.2018.04.009
– ident: e_1_3_2_18_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_3_2_11_1
  doi: 10.1016/j.acha.2014.10.001
– ident: e_1_3_2_12_1
  doi: 10.1214/12-AOS1018
– ident: e_1_3_2_7_1
  doi: 10.1198/016214501753382273
– ident: e_1_3_2_22_1
  doi: 10.1073/pnas.2014241117
SSID ssj0015783
Score 2.3324518
Snippet Corrupted data appears widely in many contemporary applications including voting behavior, high-throughput sequencing and sensor networks. In this article, we...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 215
SubjectTerms Measurement errors
model selection
nearest positive semi-definite matrix projection
polynomial algorithm
regularization
Title L 0-regularization for high-dimensional regression with corrupted data
URI https://www.tandfonline.com/doi/abs/10.1080/03610926.2022.2076125
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1532-415X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015783
  issn: 0361-0926
  databaseCode: TFW
  dateStart: 19760101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxVAGPgqI8iUPrIHETmJ7RIiIoVQMFXSL4rMzoVKlLb-fc-xU7QAMMEbKRdH5cvfOOb9HyE1V55onGiKtrMAGBazLgzyqLDMmZpWsWyql15EYj-V0ql7CNOEijFW6Hrr2RBFtrnYfd6UX3UTcHSbdJFbMDRgwd5ZKuCqNWRhLv9MwmBRv6_8IGI9eIDnHphlNujM83z1lqzptcZduVJ3i4B_e95DsB8hJ732MHJEdOxuQvec1X-tiQPoOc3rK5mNSjGgcNa1GfRNOaVJ8Q-qYjSPj1AA8kwfFe_wU7Yy67VyKjWyzmiOEpW7u9IRMisfJw1MU5BYiQFCRRSAh5ylYCZVUzIIUNtPc2MSYDIxOYyt5LivXcQGrATMTaC0MEyoGkWX8lPRmHzN7RmiVZ7jUnGcKEKCYGDGRQlwspGUKY0MOSdp5uYRARe4UMd7LpGMsDS4rncvK4LIhuV2bzT0Xx28GanMJy2W7CVJ7xZKS_2h7_gfbC9LHy7TdqWGXpLdsVvaK7MInrmRz3UboF_8e4Fo
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgIDEOPAaI8cyBa6FNljY5IsQ0xLbTBLtVbZKeUJnKxu_H7mPaDsABzq2ryHHiz679GeAmycJUBKnxUu0iDFCMo3tQeInj1vo8UVlJpfQyjMZjNZ3q1V4YKqukGDqriCLKu5oONyWjm5K4O7x1A19zqjDg1EwVkZvehC2JvpasfNJ_Xf5JQIusRiSHGDajTNPF891n1vzTGnvpit_p7__Hig9gr0ad7L4yk0PYcHkHdkdLytaPDrQJdlaszUfQHzLfK8ox9UXdqMlwiYzIjT1LAwEqMg-G71SFtDmjjC7DWLZYzBDFMio9PYZJ_3HyMPDqiQueQVwhPaNMKHrGKZMozZ1RkZOpsC6wVhqb9nynRKgSCroMzwxq26RpZHmkfRNJKU6glb_n7hRYEkrcbSGkNohRrI-wSCM0jpTjGs1DdaHXqDk2NRs5DcV4i4OGtLRWWUwqi2uVdeF2KTar6Dh-E9CrexjPyzxIVg0ticWPsmd_kL2GncFkNIyHT-Pnc2jjo16ZuOEX0JoXC3cJ2-YTd7W4Ks31C1EP5IU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgIDQOPAaI8cyBa6FL2iY5IqACMaYdJtitapP0hMrUbfx-nDadtgNwgHPrKrId57PrfAa4SvMoY71MeZk0HBMUZWwcZF5qqNY-TUVeUSm99vlgIMZjOXTdhFPXVmlz6Lwmiqhitd3cE503HXE3GHR7vqS2wYDau1TcntLrsIHQObL51yh-W_xIQIesJyRHmDWjTHOJ57vPrBxPK-SlS8dOvPsPC96DHYc5yW3tJPuwZooObL8sCFunHWhb0FlzNh9A3Ce-V1ZD6kt3TZPgComlNva0HQdQU3kQfKduoy2IrecSzGTL-QQxLLGNp4cwih9Gd4-em7fgKUQVoaeEiligjFCpkNQowU2YMW16WodKZ4FvBItEalMuRXOFoUllGdeUS1_xMGRH0Co-CnMMJI1CtDVjoVSIULSPoEgiMObCUInOIboQNFpOlOMityMx3pNeQ1nqVJZYlSVOZV24XohNajKO3wTksgmTWVUFyeuRJQn7UfbkD7KXsDW8j5P-0-D5FNr4JKiqNvQMWrNybs5hU32iUcuLylm_AKdH4zY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L+0-regularization+for+high-dimensional+regression+with+corrupted+data&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Zhang%2C+Jie&rft.au=Li%2C+Yang&rft.au=Zhao%2C+Ni&rft.au=Zheng%2C+Zemin&rft.date=2024-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=53&rft.issue=1&rft.spage=215&rft.epage=231&rft_id=info:doi/10.1080%2F03610926.2022.2076125&rft.externalDocID=2076125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon