Distributed Fleet Management in Noisy Environments via Model-Predictive Control
We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we propose Stochastic Work Graphs (SWG) as a formalism for capturing the semantics of such distributed and uncertain planning problems. We encode SW...
Uložené v:
| Vydané v: | Proceedings of the International Conference on Automated Planning and Scheduling Ročník 32; s. 565 - 573 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
13.06.2022
|
| ISSN: | 2334-0835, 2334-0843 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we propose Stochastic Work Graphs (SWG) as a formalism for capturing the semantics of such distributed and uncertain planning problems. We encode SWGs in the form of a Euclidean Markov Decision Process (EMDP) in the tool Uppaal Stratego, which employs Q-Learning to synthesize near-optimal plans. Furthermore, we deploy the tool in an online and distributed fashion to facilitate scalable, rapid replanning. While executing their current plan, each AMR generates a new plan incorporating updated information about the other AMRs positions and plans. We propose a two-layer Model Predictive Controller-structure (waypoint and station planning), each individually solved by the Q-learning-based solver. We demonstrate our approach using ARGoS3 large-scale robot simulation, where we simulate the AMR movement and observe an up to 27.5% improvement in makespan over a greedy approach to planning. To do so, we have implemented the full software stack, translating observations into SWGs and solving those with our proposed method. In addition, we construct a benchmark platform for comparing planning techniques on a reasonably realistic physical simulation and provide this under the MIT open-source license. |
|---|---|
| AbstractList | We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we propose Stochastic Work Graphs (SWG) as a formalism for capturing the semantics of such distributed and uncertain planning problems. We encode SWGs in the form of a Euclidean Markov Decision Process (EMDP) in the tool Uppaal Stratego, which employs Q-Learning to synthesize near-optimal plans. Furthermore, we deploy the tool in an online and distributed fashion to facilitate scalable, rapid replanning. While executing their current plan, each AMR generates a new plan incorporating updated information about the other AMRs positions and plans. We propose a two-layer Model Predictive Controller-structure (waypoint and station planning), each individually solved by the Q-learning-based solver. We demonstrate our approach using ARGoS3 large-scale robot simulation, where we simulate the AMR movement and observe an up to 27.5% improvement in makespan over a greedy approach to planning. To do so, we have implemented the full software stack, translating observations into SWGs and solving those with our proposed method. In addition, we construct a benchmark platform for comparing planning techniques on a reasonably realistic physical simulation and provide this under the MIT open-source license. |
| Author | Nyman, Ulrik Gjøl Jensen, Peter Guldstrand Larsen, Kim Bøgh, Simon Kristjansen, Martin |
| Author_xml | – sequence: 1 givenname: Simon surname: Bøgh fullname: Bøgh, Simon – sequence: 2 givenname: Peter surname: Gjøl Jensen fullname: Gjøl Jensen, Peter – sequence: 3 givenname: Martin surname: Kristjansen fullname: Kristjansen, Martin – sequence: 4 givenname: Kim surname: Guldstrand Larsen fullname: Guldstrand Larsen, Kim – sequence: 5 givenname: Ulrik surname: Nyman fullname: Nyman, Ulrik |
| BookMark | eNo9kMtOwzAURC1UJErpB7DzDyTY8SPJEpUWkFrKAtaWc3ODLKV2ZYdI_XvagFjN0SxGo3NLZj54JOSes5xrVj84sMeUj6JwPOd1JcUVmRdCyIydefbPQt2QZUquYVKWStdKzMn-yaUhuuZ7wJZuesSB7qy3X3hAP1Dn6Vtw6UTXfnQx-EuZ6Ogs3YUW--w9YutgcCPSVfBDDP0due5sn3D5lwvyuVl_rF6y7f75dfW4zYArJTINULBS6IK1TDZM19DZigFTTSmbDuX5YVsVTQVCgCxaxThAbTurOSgoUYsF4b-7EENKETtzjO5g48lwZi5SzCTFTFLMJEX8AKdbWYw |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1609/icaps.v32i1.19843 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2334-0843 |
| EndPage | 573 |
| ExternalDocumentID | 10_1609_icaps_v32i1_19843 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
| ID | FETCH-LOGICAL-c1553-6cc2073620d04b069cfa80c05b74bfe4044d82b8c33c42d501cc9afa61c5c7e63 |
| ISSN | 2334-0835 |
| IngestDate | Sat Nov 29 06:38:19 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1553-6cc2073620d04b069cfa80c05b74bfe4044d82b8c33c42d501cc9afa61c5c7e63 |
| OpenAccessLink | https://ojs.aaai.org/index.php/ICAPS/article/download/19843/19602 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1609_icaps_v32i1_19843 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-13 |
| PublicationDateYYYYMMDD | 2022-06-13 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the International Conference on Automated Planning and Scheduling |
| PublicationYear | 2022 |
| SSID | ssib044756953 |
| Score | 1.9158701 |
| Snippet | We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 565 |
| Title | Distributed Fleet Management in Noisy Environments via Model-Predictive Control |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2334-0843 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044756953 issn: 2334-0835 databaseCode: M~E dateStart: 20030101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoELogLEWz70BEpJ7Lx8LGVpJWBZiSL1Fjm2g1Jts6t9qVz4o_wZZuw8vK2Q6IFLtHKys0nmW8945vMMIQe5RKcjrYI4qpIgzpEEwEQWJJLzymTa6FLaZhPZZJKfn4vpaPS72wuznWVNk19dicV_VTWMgbJx6-wt1N0LhQH4DEqHI6gdjv-k-A9YChe7WIErCVoxa4_igtGNybxe_Xw79je4bWtpm6LNgukSEzeWTnTsSOy-9zrtrd2q4xbsRhSH_YOYhDjarOfgEMN9dK2RHFEUcKKRAP-jjwVguv597tI93-rLgRpwcuFOzZCG0waLdijFdpK6kN05VxWh__ZmpjGUAz_6GRbw7pJP9aUf6oBVMvYI4sOMyDiPsZy2S4Mbf8zVeuqm9DZk6ubkJE088564zik3LEdqC6_CH2OxOtxyVkeHkeik7lTpvmY9e04jrqZASGFFFFZEYUXcIXdZlgjkG375Ne4mOyy0mApbJbV_rDbrDlLe3bgRz2_yHKCzh-RBu3KhRw5x-2Rkmkfkq4c2atFGB7TRuqEWbdRHGwW00etooy3aHpPvH8dnx6dB26MjUNhxKkDaPViJlIU6jMswFaqSeajCpMzisjIxPKfOWZkrzlXMdBJGSglZyTRSicpMyp-QvWbemKeERkKWWuaasaoEtzIrmYg1Z0ZIHcVVlT0jb7o3UCxcKZbiry_9-W0ufkHuD3B7SfbWy415Re6p7bpeLV9btf0BAb2HfQ |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Fleet+Management+in+Noisy+Environments+via+Model-Predictive+Control&rft.jtitle=Proceedings+of+the+International+Conference+on+Automated+Planning+and+Scheduling&rft.au=B%C3%B8gh%2C+Simon&rft.au=Gj%C3%B8l+Jensen%2C+Peter&rft.au=Kristjansen%2C+Martin&rft.au=Guldstrand+Larsen%2C+Kim&rft.date=2022-06-13&rft.issn=2334-0835&rft.eissn=2334-0843&rft.volume=32&rft.spage=565&rft.epage=573&rft_id=info:doi/10.1609%2Ficaps.v32i1.19843&rft.externalDBID=n%2Fa&rft.externalDocID=10_1609_icaps_v32i1_19843 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2334-0835&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2334-0835&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2334-0835&client=summon |