Automorphisms and model-theory questions for Nilpotent matrix groups and rings

Let R ’ = NT( m, S ). The purpose of this paper is to investigate elementary equivalences UT( n,K ) ≡ UT( m, S ) and Λ( R ) ≡ Λ( R ’) for arbitrary associative coefficient rings with identity. The main theorem gives the description of such equivalences for n > 4. In addition, we investigate isomo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) Jg. 166; H. 5; S. 675 - 681
Hauptverfasser: Levchuk, V. M., Minakova, E. V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.05.2010
Schlagworte:
ISSN:1072-3374, 1573-8795
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R ’ = NT( m, S ). The purpose of this paper is to investigate elementary equivalences UT( n,K ) ≡ UT( m, S ) and Λ( R ) ≡ Λ( R ’) for arbitrary associative coefficient rings with identity. The main theorem gives the description of such equivalences for n > 4. In addition, we investigate isomorphisms and elementary equivalence of Jordan niltriangular matrix rings.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-010-9883-3