Optimizing Epileptic Seizure Recognition with Machine Learning Algorithms

According to the WHO, Epilepsy is a significant public health issue and increases every year from 1% to 2% in all age groups. It is one of the oldest recognized neurological disorders. Early detection and proper medication reduce the risk to the person. EEG is one of the methods to identify epilepsy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of information systems engineering & management Jg. 10; H. 5s; S. 543 - 557
1. Verfasser: Sanagavarupu Sunitha
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 24.01.2025
ISSN:2468-4376, 2468-4376
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract According to the WHO, Epilepsy is a significant public health issue and increases every year from 1% to 2% in all age groups. It is one of the oldest recognized neurological disorders. Early detection and proper medication reduce the risk to the person. EEG is one of the methods to identify epilepsy, The continuous monitoring of EEG signals recognizes seizures. These occur in the partial or total body or several parts of a brain for a person and it causes unconsciousness. A person who suffers from any one of the following health problems: high fever, sleepless nights, anxiety, and stress might cause epileptic seizures. Surviving with epilepsy is stressful and limited to employability. This work aims to build the best model using Machine Learning algorithms with high performance and accuracy values, by using the conventional Machine Learning algorithms like K- Nearest Neighbor, Support Vector Classifiers, Support Vector Regression, Lasso, Ridge, Decision Tree, Gradient Boost, eXtreme Gradient Boosting, Light Gradient Boosting Machine, Categorical Boosting, and Linear Regression. Optuna used for tuning hyperparameters in the ML models to improve the performance of a model and to obtain best results. The Kaggle data set used for training and validation purposes. In these models, according to classifiers models, all the “gradient boost” classifiers produce accuracy, precision, recall and F1-score with 1.0 values. In Regression models, the best model is “Linear Regression” with R2 score as 1.0 to detect epileptic seizures.
AbstractList According to the WHO, Epilepsy is a significant public health issue and increases every year from 1% to 2% in all age groups. It is one of the oldest recognized neurological disorders. Early detection and proper medication reduce the risk to the person. EEG is one of the methods to identify epilepsy, The continuous monitoring of EEG signals recognizes seizures. These occur in the partial or total body or several parts of a brain for a person and it causes unconsciousness. A person who suffers from any one of the following health problems: high fever, sleepless nights, anxiety, and stress might cause epileptic seizures. Surviving with epilepsy is stressful and limited to employability. This work aims to build the best model using Machine Learning algorithms with high performance and accuracy values, by using the conventional Machine Learning algorithms like K- Nearest Neighbor, Support Vector Classifiers, Support Vector Regression, Lasso, Ridge, Decision Tree, Gradient Boost, eXtreme Gradient Boosting, Light Gradient Boosting Machine, Categorical Boosting, and Linear Regression. Optuna used for tuning hyperparameters in the ML models to improve the performance of a model and to obtain best results. The Kaggle data set used for training and validation purposes. In these models, according to classifiers models, all the “gradient boost” classifiers produce accuracy, precision, recall and F1-score with 1.0 values. In Regression models, the best model is “Linear Regression” with R2 score as 1.0 to detect epileptic seizures.
Author Sanagavarupu Sunitha
Author_xml – sequence: 1
  surname: Sanagavarupu Sunitha
  fullname: Sanagavarupu Sunitha
BookMark eNpNkM1OwzAQhC1UJErpA3DLCyR4HTtxjlVVoFJQJX7OkW02qavEiewAok9PaDlw2l2NZkfzXZOZ6x0Scgs0ESyX6d3BBuyST6BWhCST7ILMGc9kzNM8m_3br8gyhAOllAGngrM52e6G0Xb2aF0TbQbb4nSa6AXt8cNj9Iymb5wdbe-iLzvuoydl9tZhVKLy7tezapveT0oXbshlrdqAy7-5IG_3m9f1Y1zuHrbrVRkbEILFigNMycpIoCCgUCC1eBe6YDVHxjimkk6dclVo0AUaTRGFKlDVeaqp1OmCwPmv8X0IHutq8LZT_rsCWp1wVCcc1RlHNeFIfwCPHFfh
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.52783/jisem.v10i5s.682
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2468-4376
EndPage 557
ExternalDocumentID 10_52783_jisem_v10i5s_682
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
OK1
ID FETCH-LOGICAL-c1552-a411542ac8101519a18b5d5b92f4e224e3802787a9b1b9ecb0ee5a9eaf73b08b3
ISSN 2468-4376
IngestDate Sat Nov 29 05:44:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5s
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1552-a411542ac8101519a18b5d5b92f4e224e3802787a9b1b9ecb0ee5a9eaf73b08b3
OpenAccessLink https://doi.org/10.52783/jisem.v10i5s.682
PageCount 15
ParticipantIDs crossref_primary_10_52783_jisem_v10i5s_682
PublicationCentury 2000
PublicationDate 2025-01-24
PublicationDateYYYYMMDD 2025-01-24
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-24
  day: 24
PublicationDecade 2020
PublicationTitle Journal of information systems engineering & management
PublicationYear 2025
SSID ssj0002140542
Score 2.2809477
Snippet According to the WHO, Epilepsy is a significant public health issue and increases every year from 1% to 2% in all age groups. It is one of the oldest...
SourceID crossref
SourceType Index Database
StartPage 543
Title Optimizing Epileptic Seizure Recognition with Machine Learning Algorithms
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2468-4376
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140542
  issn: 2468-4376
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUK7YEeENAiCgX50BMoNJvYOD6iCgQS0IoPiVvkeB2IxGajDbtCHPjtzNjeJCytBIderMiJRknm-WVij98Q8oOHMc-1ZEEfwuOAZYYHUkgeJEh9wJhGZ8wWmxBnZ8n1tfzjU4dqW05AlGXy8CCr_-pq6ANn49bZd7i7MQodcAxOhxbcDu2bHP8bSGBQPOIUwEEFY75CSdYLUzziUsH5NF9o6LZvY-GhWww0T5opkrub4QjOeBXz13Grl1q1JpwOdL1jWlVDi6XBq6SaC-xREzUaV2NgK7iFW9WdcYgwuS9wG50dMUW4W4vFwktY_6VvyqxhB0G87vAkd9pM_pPLnUb1LJtzrAKCdF7UZrA76YUFr3f3XK2il8rZM1-0Js8Q_nCskdSaSJ2JFEzMkY-R4BJp8PSpnZSL4HeT24JLzfO4lXBr5efsjXRimU5QcrlEFr1X6L5DwTL5YMoV8rmjMfmFHLd4oA0eqMcD7eCBIh6oxwOd4oG2ePhKrg4PLn8dBb5-RqBRWC9QDLWWIqVRxA0iddVLMt7nmYxyZiB0M3GC685CyayXSRiVoTFcSaNyEWdhksWrZL4clmaN0FyzMNex6PNYsyTekyLUnAnW14kwvTz8RranbyKtnExK-s-Xv_6eizfIQovB72T-fjQ2m-STntwX9WjLuu8ZCMxmrw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Epileptic+Seizure+Recognition+with+Machine+Learning+Algorithms&rft.jtitle=Journal+of+information+systems+engineering+%26+management&rft.au=Sanagavarupu+Sunitha&rft.date=2025-01-24&rft.issn=2468-4376&rft.eissn=2468-4376&rft.volume=10&rft.issue=5s&rft.spage=543&rft.epage=557&rft_id=info:doi/10.52783%2Fjisem.v10i5s.682&rft.externalDBID=n%2Fa&rft.externalDocID=10_52783_jisem_v10i5s_682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-4376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-4376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-4376&client=summon