Holes in Convex and Simple Drawings

Gons and holes in point sets have been extensively studied in the literature. For simple drawings of the complete graph a generalization of the Erd\H{o}s--Szekeres theorem is known and empty triangles have been investigated. We introduce a notion of $k$-holes for simple drawings and survey generaliz...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of graph algorithms and applications Ročník 29; číslo 3; s. 23 - 38
Hlavní autoři: Bergold, Helena, Orthaber, Joachim, Scheucher, Manfred, Schröder, Felix
Médium: Journal Article
Jazyk:angličtina
Vydáno: 15.10.2025
ISSN:1526-1719, 1526-1719
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Gons and holes in point sets have been extensively studied in the literature. For simple drawings of the complete graph a generalization of the Erd\H{o}s--Szekeres theorem is known and empty triangles have been investigated. We introduce a notion of $k$-holes for simple drawings and survey generalizations thereof, like empty $k$-cycles. We present a family of simple drawings without $4$-holes and prove a generalization of Gerken's empty hexagon theorem for convex drawings. A crucial intermediate step is the structural investigation of pseudolinear subdrawings in convex~drawings. With respect to empty $k$-cycles, we show the existence of empty $4$-cycles in every simple drawing of $K_n$ and give a construction that admits only $\Theta(n^2)$ of them.
ISSN:1526-1719
1526-1719
DOI:10.7155/jgaa.v29i3.2999