Unveiling insights from unstructured wealth: a comparative analysis of clustering techniques on blockchain cryptocurrency data

In the fourth industrial revolution era of today, individuals encounter an immense volume of information daily. The digital world is rich in data like IoT, social media, healthcare, business, cryptocurrencies, cybersecurity, etc. The situation can become problematic as these vast amounts of data req...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Computing and Engineering Jg. 4; H. 1; S. 1 - 43
Hauptverfasser: Haraty, Ramzi A., Sobeh, Salma
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Academy Publishing Center 28.01.2024
Schlagworte:
ISSN:2735-5977, 2735-5985
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the fourth industrial revolution era of today, individuals encounter an immense volume of information daily. The digital world is rich in data like IoT, social media, healthcare, business, cryptocurrencies, cybersecurity, etc. The situation can become problematic as these vast amounts of data require significant storage capacity, which leads to challenges in executing tasks such as analytical operations, processing operations, and retrieval operations that are time-consuming and arduous. To effectively analyze and utilize this data, artificial intelligence, particularly machine learning, and deep learning, can provide a practical solution. Clustering, an unsupervised learning technique, aims to identify a specific number of clusters to effectively categorize the data through data grouping. Hence, clustering is related to many fields and is used in various applications that deal with large datasets. This survey examines seven widely recognized clustering techniques, namely k-means, G-means, DBSCAN, Agglomerative hierarchical clustering, Two-stage density (DBSCAN and k-means) algorithm, Two-levels (DBSCAN and hierarchical) clustering algorithm, and Two-stage MeanShift and k-means clustering algorithm and compares them with a real dataset - The Blockchain dataset, including prominent cryptocurrencies like Binance, Bitcoin, Doge, and Ethereum, under several metrics such as silhouette coefficient, Calinski-Harabasz, Davies-Bouldin Index, time complexity, and entropy. Received: 20 July 2023 Accepted: 28 November 2023 Published: 28 January 2024
AbstractList In the fourth industrial revolution era of today, individuals encounter an immense volume of information daily. The digital world is rich in data like IoT, social media, healthcare, business, cryptocurrencies, cybersecurity, etc. The situation can become problematic as these vast amounts of data require significant storage capacity, which leads to challenges in executing tasks such as analytical operations, processing operations, and retrieval operations that are time-consuming and arduous. To effectively analyze and utilize this data, artificial intelligence, particularly machine learning, and deep learning, can provide a practical solution. Clustering, an unsupervised learning technique, aims to identify a specific number of clusters to effectively categorize the data through data grouping. Hence, clustering is related to many fields and is used in various applications that deal with large datasets. This survey examines seven widely recognized clustering techniques, namely k-means, G-means, DBSCAN, Agglomerative hierarchical clustering, Two-stage density (DBSCAN and k-means) algorithm, Two-levels (DBSCAN and hierarchical) clustering algorithm, and Two-stage MeanShift and k-means clustering algorithm and compares them with a real dataset - The Blockchain dataset, including prominent cryptocurrencies like Binance, Bitcoin, Doge, and Ethereum, under several metrics such as silhouette coefficient, Calinski-Harabasz, Davies-Bouldin Index, time complexity, and entropy. Received: 20 July 2023 Accepted: 28 November 2023 Published: 28 January 2024
Author Haraty, Ramzi A.
Sobeh, Salma
Author_xml – sequence: 1
  givenname: Ramzi A.
  surname: Haraty
  fullname: Haraty, Ramzi A.
– sequence: 2
  givenname: Salma
  surname: Sobeh
  fullname: Sobeh, Salma
BookMark eNo9kctqHDEQRYWxIY7tH8hKPzAdPVrTUnZmcGKDIZt4Laql0ozsHmkiqR1mk293-4FXdakLBy7nKzlNOSEh3zjrBF8L8f16c9MJJvqO9R3v1kafkHMxSLVSRqvTzzwMX8hVrY-MMWGENJqfk_8P6RnjFNOWxlTjdtcqDSXv6ZxqK7Nrc0FP_yFMbfeDAnV5f4ACLT4jhQTTscZKc6BummvD8spp6HYp_p1xKRIdp-ye3A5ioq4cDy27uRRM7kg9NLgkZwGmilcf94I8_Lz5s7ld3f_-dbe5vl85rqRecc5MGMUwMlRiCWMwXnvsga2VMiH0AzCFXHu_rPJeB-GUHPwoOaIx6OQFuXvn-gyP9lDiHsrRZoj27ZHL1kJp0U1oey3BC1S9NKx3TI8o3GDGATyuEWRYWOKd5UqutWD45HFm34TYRYh9FWJZb7ldhMgXKNKEjg
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.21622/ACE.2024.04.1.698
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2735-5985
EndPage 43
ExternalDocumentID oai_doaj_org_article_483ad2e543904c08be2c79b7ade6ea3f
10_21622_ACE_2024_04_1_698
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c1538-1109fb27b0e52fb2bf9d8de4a06559ff47a05e18dd398dd8f2c537db31ee99ec3
IEDL.DBID DOA
ISSN 2735-5977
IngestDate Fri Oct 03 12:51:39 EDT 2025
Sat Nov 29 06:22:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1538-1109fb27b0e52fb2bf9d8de4a06559ff47a05e18dd398dd8f2c537db31ee99ec3
OpenAccessLink https://doaj.org/article/483ad2e543904c08be2c79b7ade6ea3f
PageCount 43
ParticipantIDs doaj_primary_oai_doaj_org_article_483ad2e543904c08be2c79b7ade6ea3f
crossref_primary_10_21622_ACE_2024_04_1_698
PublicationCentury 2000
PublicationDate 2024-01-28
PublicationDateYYYYMMDD 2024-01-28
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-28
  day: 28
PublicationDecade 2020
PublicationTitle Advances in Computing and Engineering
PublicationYear 2024
Publisher Academy Publishing Center
Publisher_xml – name: Academy Publishing Center
SSID ssj0002923981
Score 2.244943
Snippet In the fourth industrial revolution era of today, individuals encounter an immense volume of information daily. The digital world is rich in data like IoT,...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 1
SubjectTerms clustering
Title Unveiling insights from unstructured wealth: a comparative analysis of clustering techniques on blockchain cryptocurrency data
URI https://doaj.org/article/483ad2e543904c08be2c79b7ade6ea3f
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2735-5985
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002923981
  issn: 2735-5977
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ2_T90wEMetCjF0QUUtglIqD92qQOLYsc0GCNShQh1KxWbZvrN4ospD7_GoWPq39y5J6WNi6RYlkWV9L7of0d3HQnxqW0Svra-AktGKMmKsHKa6Sr5JCVJnYWii-fHVXl6662v_be2oL-4JG_HAo3BH2rURFBoKnLXOtUuosvXJRsAOY1vY-1LWs1ZMsQ9Wnrl2XG1ReDYVQ9bGiRnVdEodnZydU2moNFNOm8POu2dRaQ3eP0SZizdia0oP5cm4rW3xCvu34vdV_4AznhuXs37J1fRS8liIXE3419UCQf4aOrmOZZT5H9Fbxgk6IudF5p8rxiLwOk_oVnrQy0QR7TbfxFkv8-Lx7n6eB2pTfpTcQPpOXF2cfz_7Uk3nJlR58F8MES1J2VSjUXSRigcHqCOlG8aXom2sDTYOgDQCcEVl01pIbUN285jbHbHRz3vcFbLrgMGhlIdpq0syMUYw0JjSaXAt-D3x-a9u4W7EYwQqKwaVA6kcWOVQ69AEUnlPnLK0T28y2nq4QQYPk8HDSwZ__z8W2ReveWf8L0W5D2KDjIUHYjM_3M-Wi4_Dt_QHjpfQeQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+insights+from+unstructured+wealth%3A+a+comparative+analysis+of+clustering+techniques+on+blockchain+cryptocurrency+data&rft.jtitle=Advances+in+Computing+and+Engineering&rft.au=Haraty%2C+Ramzi+A.&rft.au=Sobeh%2C+Salma&rft.date=2024-01-28&rft.issn=2735-5977&rft.eissn=2735-5985&rft.volume=4&rft.issue=1&rft.spage=1&rft_id=info:doi/10.21622%2FACE.2024.04.1.698&rft.externalDBID=n%2Fa&rft.externalDocID=10_21622_ACE_2024_04_1_698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2735-5977&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2735-5977&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2735-5977&client=summon