Unveiling insights from unstructured wealth: a comparative analysis of clustering techniques on blockchain cryptocurrency data
In the fourth industrial revolution era of today, individuals encounter an immense volume of information daily. The digital world is rich in data like IoT, social media, healthcare, business, cryptocurrencies, cybersecurity, etc. The situation can become problematic as these vast amounts of data req...
Gespeichert in:
| Veröffentlicht in: | Advances in Computing and Engineering Jg. 4; H. 1; S. 1 - 43 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Academy Publishing Center
28.01.2024
|
| Schlagworte: | |
| ISSN: | 2735-5977, 2735-5985 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the fourth industrial revolution era of today, individuals encounter an immense volume of information daily. The digital world is rich in data like IoT, social media, healthcare, business, cryptocurrencies, cybersecurity, etc. The situation can become problematic as these vast amounts of data require significant storage capacity, which leads to challenges in executing tasks such as analytical operations, processing operations, and retrieval operations that are time-consuming and arduous. To effectively analyze and utilize this data, artificial intelligence, particularly machine learning, and deep learning, can provide a practical solution. Clustering, an unsupervised learning technique, aims to identify a specific number of clusters to effectively categorize the data through data grouping. Hence, clustering is related to many fields and is used in various applications that deal with large datasets. This survey examines seven widely recognized clustering techniques, namely k-means, G-means, DBSCAN, Agglomerative hierarchical clustering, Two-stage density (DBSCAN and k-means) algorithm, Two-levels (DBSCAN and hierarchical) clustering algorithm, and Two-stage MeanShift and k-means clustering algorithm and compares them with a real dataset - The Blockchain dataset, including prominent cryptocurrencies like Binance, Bitcoin, Doge, and Ethereum, under several metrics such as silhouette coefficient, Calinski-Harabasz, Davies-Bouldin Index, time complexity, and entropy. Received: 20 July 2023 Accepted: 28 November 2023 Published: 28 January 2024 |
|---|---|
| AbstractList | In the fourth industrial revolution era of today, individuals encounter an immense volume of information daily. The digital world is rich in data like IoT, social media, healthcare, business, cryptocurrencies, cybersecurity, etc. The situation can become problematic as these vast amounts of data require significant storage capacity, which leads to challenges in executing tasks such as analytical operations, processing operations, and retrieval operations that are time-consuming and arduous. To effectively analyze and utilize this data, artificial intelligence, particularly machine learning, and deep learning, can provide a practical solution. Clustering, an unsupervised learning technique, aims to identify a specific number of clusters to effectively categorize the data through data grouping. Hence, clustering is related to many fields and is used in various applications that deal with large datasets. This survey examines seven widely recognized clustering techniques, namely k-means, G-means, DBSCAN, Agglomerative hierarchical clustering, Two-stage density (DBSCAN and k-means) algorithm, Two-levels (DBSCAN and hierarchical) clustering algorithm, and Two-stage MeanShift and k-means clustering algorithm and compares them with a real dataset - The Blockchain dataset, including prominent cryptocurrencies like Binance, Bitcoin, Doge, and Ethereum, under several metrics such as silhouette coefficient, Calinski-Harabasz, Davies-Bouldin Index, time complexity, and entropy. Received: 20 July 2023 Accepted: 28 November 2023 Published: 28 January 2024 |
| Author | Haraty, Ramzi A. Sobeh, Salma |
| Author_xml | – sequence: 1 givenname: Ramzi A. surname: Haraty fullname: Haraty, Ramzi A. – sequence: 2 givenname: Salma surname: Sobeh fullname: Sobeh, Salma |
| BookMark | eNo9kctqHDEQRYWxIY7tH8hKPzAdPVrTUnZmcGKDIZt4Laql0ozsHmkiqR1mk293-4FXdakLBy7nKzlNOSEh3zjrBF8L8f16c9MJJvqO9R3v1kafkHMxSLVSRqvTzzwMX8hVrY-MMWGENJqfk_8P6RnjFNOWxlTjdtcqDSXv6ZxqK7Nrc0FP_yFMbfeDAnV5f4ACLT4jhQTTscZKc6BummvD8spp6HYp_p1xKRIdp-ye3A5ioq4cDy27uRRM7kg9NLgkZwGmilcf94I8_Lz5s7ld3f_-dbe5vl85rqRecc5MGMUwMlRiCWMwXnvsga2VMiH0AzCFXHu_rPJeB-GUHPwoOaIx6OQFuXvn-gyP9lDiHsrRZoj27ZHL1kJp0U1oey3BC1S9NKx3TI8o3GDGATyuEWRYWOKd5UqutWD45HFm34TYRYh9FWJZb7ldhMgXKNKEjg |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.21622/ACE.2024.04.1.698 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2735-5985 |
| EndPage | 43 |
| ExternalDocumentID | oai_doaj_org_article_483ad2e543904c08be2c79b7ade6ea3f 10_21622_ACE_2024_04_1_698 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c1538-1109fb27b0e52fb2bf9d8de4a06559ff47a05e18dd398dd8f2c537db31ee99ec3 |
| IEDL.DBID | DOA |
| ISSN | 2735-5977 |
| IngestDate | Fri Oct 03 12:51:39 EDT 2025 Sat Nov 29 06:22:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1538-1109fb27b0e52fb2bf9d8de4a06559ff47a05e18dd398dd8f2c537db31ee99ec3 |
| OpenAccessLink | https://doaj.org/article/483ad2e543904c08be2c79b7ade6ea3f |
| PageCount | 43 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_483ad2e543904c08be2c79b7ade6ea3f crossref_primary_10_21622_ACE_2024_04_1_698 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-28 |
| PublicationDateYYYYMMDD | 2024-01-28 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Advances in Computing and Engineering |
| PublicationYear | 2024 |
| Publisher | Academy Publishing Center |
| Publisher_xml | – name: Academy Publishing Center |
| SSID | ssj0002923981 |
| Score | 2.244943 |
| Snippet | In the fourth industrial revolution era of today, individuals encounter an immense volume of information daily. The digital world is rich in data like IoT,... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 1 |
| SubjectTerms | clustering |
| Title | Unveiling insights from unstructured wealth: a comparative analysis of clustering techniques on blockchain cryptocurrency data |
| URI | https://doaj.org/article/483ad2e543904c08be2c79b7ade6ea3f |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2735-5985 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002923981 issn: 2735-5977 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ2_T90wEMetCjF0QUUtglIqD92qQOLYsc0GCNShQh1KxWbZvrN4ospD7_GoWPq39y5J6WNi6RYlkWV9L7of0d3HQnxqW0Svra-AktGKMmKsHKa6Sr5JCVJnYWii-fHVXl6662v_be2oL-4JG_HAo3BH2rURFBoKnLXOtUuosvXJRsAOY1vY-1LWs1ZMsQ9Wnrl2XG1ReDYVQ9bGiRnVdEodnZydU2moNFNOm8POu2dRaQ3eP0SZizdia0oP5cm4rW3xCvu34vdV_4AznhuXs37J1fRS8liIXE3419UCQf4aOrmOZZT5H9Fbxgk6IudF5p8rxiLwOk_oVnrQy0QR7TbfxFkv8-Lx7n6eB2pTfpTcQPpOXF2cfz_7Uk3nJlR58F8MES1J2VSjUXSRigcHqCOlG8aXom2sDTYOgDQCcEVl01pIbUN285jbHbHRz3vcFbLrgMGhlIdpq0syMUYw0JjSaXAt-D3x-a9u4W7EYwQqKwaVA6kcWOVQ69AEUnlPnLK0T28y2nq4QQYPk8HDSwZ__z8W2ReveWf8L0W5D2KDjIUHYjM_3M-Wi4_Dt_QHjpfQeQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+insights+from+unstructured+wealth%3A+a+comparative+analysis+of+clustering+techniques+on+blockchain+cryptocurrency+data&rft.jtitle=Advances+in+Computing+and+Engineering&rft.au=Haraty%2C+Ramzi+A.&rft.au=Sobeh%2C+Salma&rft.date=2024-01-28&rft.issn=2735-5977&rft.eissn=2735-5985&rft.volume=4&rft.issue=1&rft.spage=1&rft_id=info:doi/10.21622%2FACE.2024.04.1.698&rft.externalDBID=n%2Fa&rft.externalDocID=10_21622_ACE_2024_04_1_698 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2735-5977&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2735-5977&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2735-5977&client=summon |