New Reducible Configurations for Graph Multicoloring with Application to the Experimental Resolution of McDiarmid-Reed's Conjecture
A $(a,b)$-coloring of a graph $G$ associates to each vertex a $b$-subset of a set of $a$ colors in such a way that the color-sets of adjacent vertices are disjoint. We define general handle reduction methods for $(a,b)$-coloring of graphs for $2\le a/b\le 3$. In particular, using necessary and suffi...
Saved in:
| Published in: | Journal of graph algorithms and applications Vol. 29; no. 1; pp. 267 - 288 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.10.2025
|
| ISSN: | 1526-1719, 1526-1719 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A $(a,b)$-coloring of a graph $G$ associates to each vertex a $b$-subset of a set of $a$ colors in such a way that the color-sets of adjacent vertices are disjoint. We define general handle reduction methods for $(a,b)$-coloring of graphs for $2\le a/b\le 3$. In particular, using necessary and sufficient conditions for the existence of an $(a,b)$-coloring of a path with prescribed color-sets on its end-vertices, more complex $(a,b)$-colorability reduction handles are presented. The utility of these tools is exemplified on finite triangle-free induced subgraphs of the triangular lattice for which McDiarmid-Reed's conjecture asserts that they are all $(9,4)$-colorable. Computations on millions of such graphs generated randomly show that our tools allow to find a $(9,4)$-coloring for each of them except for one specific regular shape of graphs (that can be $(9,4)$-colored by an easy ad-hoc process). We thus obtain computational evidence towards the conjecture of McDiarmid&Reed. |
|---|---|
| AbstractList | A $(a,b)$-coloring of a graph $G$ associates to each vertex a $b$-subset of a set of $a$ colors in such a way that the color-sets of adjacent vertices are disjoint. We define general handle reduction methods for $(a,b)$-coloring of graphs for $2\le a/b\le 3$. In particular, using necessary and sufficient conditions for the existence of an $(a,b)$-coloring of a path with prescribed color-sets on its end-vertices, more complex $(a,b)$-colorability reduction handles are presented. The utility of these tools is exemplified on finite triangle-free induced subgraphs of the triangular lattice for which McDiarmid-Reed's conjecture asserts that they are all $(9,4)$-colorable. Computations on millions of such graphs generated randomly show that our tools allow to find a $(9,4)$-coloring for each of them except for one specific regular shape of graphs (that can be $(9,4)$-colored by an easy ad-hoc process). We thus obtain computational evidence towards the conjecture of McDiarmid&Reed. |
| Author | Godin, Jean-Christophe Togni, Olivier |
| Author_xml | – sequence: 1 givenname: Jean-Christophe surname: Godin fullname: Godin, Jean-Christophe – sequence: 2 givenname: Olivier orcidid: 0000-0001-9510-3595 surname: Togni fullname: Togni, Olivier |
| BookMark | eNpNkL1PwzAQxS1UJNrCzOqNKa0dx_kYq1IKUgGpgjlynHPryo0j26Ew84-TFAaWeyfd6b2n3wSNGtsAQreUzDLK-fywE2L2EReazhgp0gs0pjxOI5rRYvRvv0IT7w-ExCzO8jH6foET3kLdSV0ZwEvbKL3rnAjaNh4r6_DaiXaPnzsTtLTGOt3s8EmHPV60rdHy_ImDxWEPePXZgtNHaIIwvau3pjufrcLP8l4Ld9R1tAWo7_wQdQAZOgfX6FIJ4-HmT6fo_WH1tnyMNq_rp-ViE0nKWdpPqkReS1qpTFaSSpVAmudVJbKKqAwU1IRDzjORqD4ipSCYLJIkJzVnhBA2RfNfX-ms9w5U2fZlhfsqKSkHhuXAsDwzLAeG7Aeg-Gw7 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.7155/jgaa.v29i1.3096 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1526-1719 |
| EndPage | 288 |
| ExternalDocumentID | 10_7155_jgaa_v29i1_3096 |
| GroupedDBID | -~9 29K 2WC 5GY AAFWJ AAKPC AAYXX ACGFO ACIPV AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION D-I E3Z EBS EJD F5P GROUPED_DOAJ M~E OK1 OVT P2P REM RNS TR2 XSB |
| ID | FETCH-LOGICAL-c1536-c11fa8dc1bf7cbc1cf4e688bba7b0f7efed05e857a4feed61ea3c94480d530003 |
| ISSN | 1526-1719 |
| IngestDate | Wed Nov 05 20:34:36 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1536-c11fa8dc1bf7cbc1cf4e688bba7b0f7efed05e857a4feed61ea3c94480d530003 |
| ORCID | 0000-0001-9510-3595 |
| OpenAccessLink | https://jgaa.info/index.php/jgaa/article/download/3096/3014 |
| PageCount | 22 |
| ParticipantIDs | crossref_primary_10_7155_jgaa_v29i1_3096 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of graph algorithms and applications |
| PublicationYear | 2025 |
| SSID | ssj0023278 |
| Score | 2.3672032 |
| Snippet | A $(a,b)$-coloring of a graph $G$ associates to each vertex a $b$-subset of a set of $a$ colors in such a way that the color-sets of adjacent vertices are... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 267 |
| Title | New Reducible Configurations for Graph Multicoloring with Application to the Experimental Resolution of McDiarmid-Reed's Conjecture |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1526-1719 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023278 issn: 1526-1719 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1526-1719 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023278 issn: 1526-1719 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoEeKp6CFiofkEBapeTt-FjBApcWVBWpt8h27G3Qkq12t6ueuPCb-v8643id7KqVyoGLFVmrSbLzxTMez3xDyDtsFR1VCr7vJMNolVaB5HClZc7AfQ2zWEnbbIIdHxdnZ_zHYHC9qoVZTljTFFdX_OK_qhrmQNlYOvsP6vZCYQKuQekwgtphvJfiMWPxBAlZayyKwoq-enw5cxlvmFT4FTmqh7byFimrZz4ce9gdZq9c0lG_AQCG-tsnt4kz6nMtACZVcKIxYsps989f7ZnEHT6vpcceiskY7ro4_93yQ_fP0H060LRybcK0aIKOAaELio9tL6rh90mNlr0fvIgznwbn19s4DyLmVk19y5xbpF1YpA9Gt-K23Tyc8Y7bHoGbdoGB14R2YSzEwTLmdXSQhPwWBu4Ny-jzFWGnhCJKFFBaASUKeEAexizjmEl49Gfk9_lJbB0A_x4toxQK-LjxBD1nqOfVnD4hO0419LCF0VMy0M0zsn3kuXznz8lfABT1gKLrgKIAKGoBRdcARRFQtAcouphSEEr7gKIdoOjU0HVAvZ_TDk4vyM8vo9NP3wLXuiNQYEJzGCMjikpF0jAlVaRMqvOikFIwGRqmja7CTBcZE6kBkXmkRaJ4mhZhlSW4T39Jtpppo18RmnGhwC0vEpNyDHZIlvC80oZzo-KkEq_Jh9V_WF60DC3lHfravf9P98jjDq9vyNZidqnfkkdquajns30budm3Wr8BxhSTJA |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Reducible+Configurations+for+Graph+Multicoloring+with+Application+to+the+Experimental+Resolution+of+McDiarmid-Reed%27s+Conjecture&rft.jtitle=Journal+of+graph+algorithms+and+applications&rft.au=Godin%2C+Jean-Christophe&rft.au=Togni%2C+Olivier&rft.date=2025-10-01&rft.issn=1526-1719&rft.eissn=1526-1719&rft.volume=29&rft.issue=1&rft.spage=267&rft.epage=288&rft_id=info:doi/10.7155%2Fjgaa.v29i1.3096&rft.externalDBID=n%2Fa&rft.externalDocID=10_7155_jgaa_v29i1_3096 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1719&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1719&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1719&client=summon |